diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td index f3ca09a6a68ea..26eec0d4f2082 100644 --- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td +++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td @@ -19,12 +19,18 @@ class XeGPUAttr traits = [], let mnemonic = attrMnemonic; } -def XeGPU_TensorDescAttr: XeGPUAttr<"TensorDesc", "tdesc_attr"> { +class XeGPU_TensorDescAttr traits = [], + string baseCppClass = "::mlir::Attribute"> + : XeGPUAttr { + let assemblyFormat = "`<` struct(params) `>`"; +} + +def XeGPU_BlockTensorDescAttr: XeGPU_TensorDescAttr<"BlockTensorDesc", "block_tdesc_attr"> { let summary = [{a composite attribute for `TensorDescType`}]; - let description = [{`TensorDescAttr` (or `tdesc_attr`) is a composite + let description = [{`BlockTensorDesc` (or `block_tdesc_attr`) is a composite attribute defined for `TensorDescType` for describing following properties of a `TensorDesc`. - 1. `memory_scope`: It describes where the data block described by the + 1. `memory_space`: It describes where the data block described by the TensorDesc is located, `Global` device memory or `Shared` local memory. It is default to `Global`. 2. `array_length`: It describes how many horizontally consecutive blocks @@ -33,43 +39,63 @@ def XeGPU_TensorDescAttr: XeGPUAttr<"TensorDesc", "tdesc_attr"> { 8x32. Its default value is 1. 3. `boundary_check`: It is used to indicates the hardware whether to do out-of-boundary check. The default value is true. - 4. `scattered`: It is used to differenciate TensorDescs created from - `create_nd_tdesc` vs from `create_tdesc`. }]; let parameters = (ins - OptionalParameter<"MemoryScopeAttr">: $memory_scope, + OptionalParameter<"MemorySpaceAttr">: $memory_space, OptionalParameter<"IntegerAttr", "1">: $array_length, - OptionalParameter<"BoolAttr", "true">: $boundary_check, - OptionalParameter<"BoolAttr", "false">: $scattered + OptionalParameter<"BoolAttr", "true">: $boundary_check ); let builders = [ AttrBuilder<(ins - CArg<"xegpu::MemoryScope", "xegpu::MemoryScope::Global">:$memory_scope, + CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space, CArg<"int", "1">:$array_length, - CArg<"bool", "true">: $boundary_check, - CArg<"bool", "false">: $scattered + CArg<"bool", "true">: $boundary_check )> ]; - let assemblyFormat = "`<` struct(params) `>`"; } +def XeGPU_ScatterTensorDescAttr: XeGPU_TensorDescAttr<"ScatterTensorDesc", "scatter_tdesc_attr"> { + let summary = [{a composite attribute for `TensorDescType`}]; + let description = [{`ScatterTensorDesc` (or `scatter_tdesc_attr`) is a composite + attribute defined for `TensorDescType` for describing following + properties of a `TensorDesc`. + 1. `memory_space`: It describes where the data block described by the + TensorDesc is located, `Global` device memory or `Shared` local memory. + It is default to `Global`. + 2. `chunk_size`: indicates number of continious elements accessed for each + offset, default is 1. It is used with `scattered` attr only. + }]; + + let parameters = (ins + OptionalParameter<"MemorySpaceAttr">: $memory_space, + OptionalParameter<"IntegerAttr", "1">: $chunk_size + ); + + let builders = [ + AttrBuilder<(ins + CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space, + CArg<"int", "1">: $chunk_size + )> + ]; + } + //===----------------------------------------------------------------------===// // XeGPU Memory Scope Enums. //===----------------------------------------------------------------------===// -def XeGPU_MemoryScopeGlobal: I32EnumAttrCase<"Global", 0, "global">; -def XeGPU_MemoryScopeShared: I32EnumAttrCase<"SLM", 1, "slm">; -def XeGPU_MemoryScope: I32EnumAttr<"MemoryScope", +def XeGPU_MemorySpaceGlobal: I32EnumAttrCase<"Global", 0, "global">; +def XeGPU_MemorySpaceShared: I32EnumAttrCase<"SLM", 3, "slm">; +def XeGPU_MemorySpace: I32EnumAttr<"MemorySpace", "The address space of the memory the tensor descritor is created for", - [XeGPU_MemoryScopeGlobal, XeGPU_MemoryScopeShared]> { + [XeGPU_MemorySpaceGlobal, XeGPU_MemorySpaceShared]> { let genSpecializedAttr = 0; let cppNamespace = "::mlir::xegpu"; } -def XeGPU_MemoryScopeAttr: - EnumAttr { +def XeGPU_MemorySpaceAttr: + EnumAttr { let summary = [{Describe the location of data described by a `TensorDesc`: Global device memory (`Global`) or Shared local memory (`SLM`).}]; let assemblyFormat = "$value"; @@ -116,4 +142,4 @@ def XeGPU_FenceScopeAttr: let assemblyFormat = "$value"; } -#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD \ No newline at end of file +#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td index c32c7541c3979..e24a056de2caf 100644 --- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td +++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td @@ -218,6 +218,23 @@ def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, ViewLikeOpInterface static unsigned getOffsetSizeAndStrideStartOperandIndex() { return 1; } mlir::Value getViewSource() { return getSource(); } + + unsigned getSourceMemorySpace() { + auto srcTy = getSourceType(); + if (auto memrefTy = llvm::dyn_cast(srcTy)) { + auto attr = memrefTy.getMemorySpace(); + if (attr) { + if (auto intAttr = llvm::dyn_cast(attr)) { + return static_cast(intAttr.getInt()); + } + if (auto memSpaceAttr = llvm::dyn_cast(attr)) + return static_cast(memSpaceAttr.getValue()); + } + } + // take global as default memory scope. + return static_cast(MemorySpace::Global); + } + }]; } @@ -411,8 +428,10 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> { is fixed to the hardware supportted subgroup size, e.g., 16 on PVC, implying each element in the array corresponds to a work-item (SIMT lane) in the subgroup. - * chunk_size: [optional attribute] indicates number of continious - elements accessed for each offset, default is 1. + + The first dimension of the result TensorDesc corresponds to work-items, so it should + match the dimension of offsets. It may also has a second dimension corresponding to + the chunk_size if the chunk size is larger than 1. Example 1. It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64] ```mlir @@ -424,29 +443,22 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> { It will access totally 32 data elements: a[0:7], a[16:23], a[32:39], a[64:71] ```mlir %0 = memref.alloc() : memref<1024xf32> - %1 = xegpu.create_tdesc %0[0, 16, 32, 64] {chunk_size = 8}: memref<1024xf32> -> TensorDesc<4x8xf32> + %1 = xegpu.create_tdesc %0[0, 16, 32, 64] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8> ``` Example 3. It is similar to Example 2, but there is some overlaps among workitems. It accesses: a[0:7], a[4:11], a[8:15], a[12:19] ```mlir %0 = memref.alloc() : memref<1024xf32> - %1 = xegpu.create_tdesc %0[0, 4, 8, 12] {chunk_size = 8}: memref<1024xf32> -> TensorDesc<4x8xf32> + %1 = xegpu.create_tdesc %0[0, 4, 8, 12] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>> ``` }]; let arguments = (ins XeGPU_BaseAddrType: $source, Variadic: $offsets, - DenseI64ArrayAttr: $const_offsets, - DefaultValuedAttr: $chunk_size); + DenseI64ArrayAttr: $const_offsets); let results = (outs XeGPU_TensorDesc:$TensorDesc); - let builders = [ - OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "Value": $source, - "llvm::ArrayRef": $offsets, - CArg<"uint32_t", "1"> : $chunk_size)>, - ]; - let assemblyFormat = [{ $source custom($offsets, $const_offsets) @@ -473,6 +485,22 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> { assert(idx < getNumOffsets() && "Invalid out of bound access."); return getMixedOffsets()[idx]; } + + unsigned getSourceMemorySpace() { + auto srcTy = getSource().getType(); + if (auto memrefTy = llvm::dyn_cast(srcTy)) { + auto attr = memrefTy.getMemorySpace(); + if (attr) { + if (auto intAttr = llvm::dyn_cast(attr)) + return static_cast(intAttr.getInt()); + if (auto memSpaceAttr = llvm::dyn_cast(attr)) + return static_cast(memSpaceAttr.getValue()); + } + } + // take global as default memory scope. + return static_cast(MemorySpace::Global); + } + }]; let hasVerifier = 1; @@ -520,28 +548,31 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"] let description = [{ It (aka. load) load data per each work-item. The output describes the data being loaded at the subgroup level, so its size is - consistent with the number of work-items in a subgroup. When `chunk_size_per_lane` - attribute is larger than 1 in TensorDesc, the output vector will be 2D vector, - with dim-1 correspoding to the chunk size. + consistent with the number of work-items in a subgroup. When the chunk size + is larger than 2, the output vector is a 2D vector, with dim-1 correspoding + to work-items, and dim-0 corresponding to the chunk_size loaded by each work-item. + Specially, there is a transpose effect on the result (as compared to the TensorDesc) + due to the hardware implementation. Therefore, a transpose attribute is introduced + on purpose, making sure users are aware of this implicit transformation. The mask operand masks out memory access so that it is safe to pass out-of-boundary addresses/offsets as long as they are masked. It applies to slots of SIMD lanes. Example: ```mlir - %2 = xegpu.load %1, %0 {transpose = [1, 0], + %2 = xegpu.load %1, %0 {transpose, l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint, l3_hint = #xegpu.cache_hint} - : !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr>, vector<16xi1> - -> vector<16xf32> + : !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr>, + vector<16xi1> -> vector<16xf32> ``` }]; let arguments = (ins XeGPU_TensorDesc: $TensorDesc, XeGPU_MaskType: $mask, - OptionalAttr: $transpose, + OptionalAttr: $transpose, OptionalAttr: $l1_hint, OptionalAttr: $l2_hint, OptionalAttr: $l3_hint); @@ -573,11 +604,15 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"] let hasVerifier = 1; } -def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllShapesMatch<["value", "TensorDesc"]>, - AllElementTypesMatch<["value", "TensorDesc"]>]> { +def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch<["value", "TensorDesc"]>, + AllElementTypesMatch<["value", "TensorDesc"]>]> { let summary = "store data to scattered memory locations."; - let description = [{ It (aka. store) stores data to scattered memory locations. - It has similar semantic to `load_gather`. + let description = [{ It (aka. store) stores data to scattered memory locations. The value is + typically a 1D vector. But when the chunk size of the TensorDesc is larger than 1, it will be + a 2D vector instead. For the later case, dim-1 of the value correspods to the simd lanes + and the dim-0 of the value corresponds to the chunk_size stored per lane. So `store_scatter` + has transpose effect, which is similar to `load_gather`. Therefore, a transpose attribute is + introduced on purpose, making sure users are aware of this implicit transformation. Example: ```mlir @@ -592,6 +627,7 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllShapesMatch<["value", "TensorDe XeGPU_ValueType: $value, XeGPU_TensorDesc: $TensorDesc, XeGPU_MaskType: $mask, + OptionalAttr: $transpose, OptionalAttr: $l1_hint, OptionalAttr: $l2_hint, OptionalAttr: $l3_hint); @@ -723,7 +759,7 @@ def XeGPU_DpasOp : XeGPU_Op<"dpas", [Pure, AllElementTypesMatch<["lhs", "rhs"]>] def XeGPU_AtomicRMWOp: XeGPU_Op<"atomic_rmw", [Pure, AllElementTypesMatch<["tensorDesc", "value", "result"]>, - AllShapesMatch<["tensorDesc", "mask", "value", "result"]>]> { + AllShapesMatch<["tensorDesc", "value", "result"]>]> { let summary = "Atomic ready-modify-write operation on the TensorDesc. "; let description = [{ @@ -808,7 +844,7 @@ def XeGPU_FenceOp: XeGPU_Op<"fence", []> { 2. `Fence_scope` describes the scope of fence. "Workgroup" means that the scope would be within each workgroup. "GPU" means the scope would be across workgroups within the GPU. }]; - let arguments = (ins XeGPU_MemoryScopeAttr: $memory_kind, + let arguments = (ins XeGPU_MemorySpaceAttr: $memory_kind, XeGPU_FenceScopeAttr: $fence_scope); let assemblyFormat = [{`memory_kind` `=` `` $memory_kind `,` `fence_scope` `=` `` $fence_scope attr-dict}]; let extraClassDeclaration = extraBaseClassDeclaration; diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td index 9f101a71697b5..0ce1211664b5b 100644 --- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td +++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td @@ -48,7 +48,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", Similar to the builtin tensor, it also provides an optinal attribute to encoding the following information via the TensorDescAttr object: - * memory_scope (xegpu::MemoryScope): [optional] where the data is located, + * memory_space (xegpu::MemorySpace): [optional] where the data is located, global memory or shared memory. It is default to Global. * array_length (int): [optional] The number of contiguous blocks with size as `shape`, that will be loaded by block load at a time. It is default to 1. @@ -63,7 +63,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", element-type ::= float-type | integer-type | index-type dim-list := (static-dim-list `x`)? static-dim-list ::= decimal-literal `x` decimal-literal - attr-list = (, memory_scope = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)? + attr-list = (, memory_space = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)? ``` Examples: @@ -76,7 +76,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", xegpu.tensor_desc<8x16xf32> // A TensorDesc with 8x16 f32 elements for a memory region in shared memory space. - xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr> + xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr> ``` }]; @@ -88,11 +88,14 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", TypeBuilderWithInferredContext<(ins "llvm::ArrayRef": $shape, "mlir::Type": $elementType, - CArg<"bool", "false">: $scattered, CArg<"int", "1">: $array_length, - CArg<"xegpu::MemoryScope", "xegpu::MemoryScope::Global">:$memory_scope, - CArg<"bool", "true">: $boundary_check - )> + CArg<"bool", "true">: $boundary_check, + CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)>, + TypeBuilderWithInferredContext<(ins + "llvm::ArrayRef": $shape, + "mlir::Type": $elementType, + CArg<"int", "1">: $chunk_size, + CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)> ]; let extraClassDeclaration = [{ @@ -110,40 +113,58 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc", return llvm::cast(cloneWith(getShape(), elementType)); } - TensorDescAttr getEncodingAsTensorDescAttr() const { - return llvm::dyn_cast_if_present(getEncoding()); + BlockTensorDescAttr getEncodingAsBlockTensorDescAttr() const { + return llvm::dyn_cast_if_present(getEncoding()); } - xegpu::MemoryScope getMemoryScope() const { - auto attr = getEncodingAsTensorDescAttr(); - if (attr && attr.getMemoryScope()) - return attr.getMemoryScope().getValue(); + ScatterTensorDescAttr getEncodingAsScatterTensorDescAttr() const { + return llvm::dyn_cast_if_present(getEncoding()); + } + + xegpu::MemorySpace getMemorySpace() const { + auto block_attr = getEncodingAsBlockTensorDescAttr(); + if (block_attr && block_attr.getMemorySpace()) + return block_attr.getMemorySpace().getValue(); + + auto scatter_attr = getEncodingAsScatterTensorDescAttr(); + if (scatter_attr && scatter_attr.getMemorySpace()) + return scatter_attr.getMemorySpace().getValue(); + // return default value - return MemoryScope::Global; + return MemorySpace::Global; } int getArrayLength() { - auto attr = getEncodingAsTensorDescAttr(); - if (attr && attr.getArrayLength()) - return attr.getArrayLength().getInt(); + auto attr = getEncoding(); + auto block_attr = mlir::dyn_cast_if_present(attr); + assert((!attr || block_attr) && "invalid on non BlockTensorDescAttr."); + if (block_attr && block_attr.getArrayLength()) + return block_attr.getArrayLength().getInt(); // return default value return 1; } bool getBoundaryCheck() { - auto attr = getEncodingAsTensorDescAttr(); - if (attr && attr.getBoundaryCheck()) - return attr.getBoundaryCheck().getValue(); + auto attr = getEncoding(); + auto block_attr = mlir::dyn_cast_if_present(attr); + assert((!attr || block_attr) && "invalid on non BlockTensorDescAttr."); + if (block_attr && block_attr.getBoundaryCheck()) + return block_attr.getBoundaryCheck().getValue(); // return default value return true; } - bool getScattered() { - auto attr = getEncodingAsTensorDescAttr(); - if (attr && attr.getScattered()) - return attr.getScattered().getValue(); - // return default value - return false; + bool isScattered() { + return bool(getEncodingAsScatterTensorDescAttr()); + } + + int getChunkSize() { + auto attr = getEncoding(); + auto scatter_attr = mlir::dyn_cast_if_present(attr); + assert((!attr || scatter_attr) && "invalid on non ScatterTensorDescAttr."); + if (scatter_attr && scatter_attr.getChunkSize()) + return scatter_attr.getChunkSize().getInt(); + return 1; } }]; diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp index 24719fe748fe4..1dfbaed454c19 100644 --- a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp +++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp @@ -30,23 +30,35 @@ void XeGPUDialect::initialize() { } //===----------------------------------------------------------------------===// -// XeGPU_TensorDescAttr +// XeGPU_BlockTensorDescAttr //===----------------------------------------------------------------------===// -TensorDescAttr TensorDescAttr::get(mlir::MLIRContext *context, - xegpu::MemoryScope memory_scope, - int array_length, bool boundary_check, - bool scattered) { - auto scopeAttr = MemoryScopeAttr::get(context, memory_scope); +BlockTensorDescAttr BlockTensorDescAttr::get(mlir::MLIRContext *context, + xegpu::MemorySpace memory_space, + int array_length, + bool boundary_check) { + auto scopeAttr = MemorySpaceAttr::get(context, memory_space); auto lengthAttr = IntegerAttr::get(IntegerType::get(context, 64), array_length); auto boundaryAttr = BoolAttr::get(context, boundary_check); - auto scatteredAttr = BoolAttr::get(context, scattered); - return Base::get(context, scopeAttr, lengthAttr, boundaryAttr, scatteredAttr); + return Base::get(context, scopeAttr, lengthAttr, boundaryAttr); +} + +//===----------------------------------------------------------------------===// +// XeGPU_ScatterTensorDescAttr +//===----------------------------------------------------------------------===// +ScatterTensorDescAttr +ScatterTensorDescAttr::get(mlir::MLIRContext *context, + xegpu::MemorySpace memory_space, int chunk_size) { + auto scopeAttr = MemorySpaceAttr::get(context, memory_space); + auto chunkSizeAttr = + IntegerAttr::get(IntegerType::get(context, 64), chunk_size); + return Base::get(context, scopeAttr, chunkSizeAttr); } //===----------------------------------------------------------------------===// // XeGPU_TensorDescType //===----------------------------------------------------------------------===// + mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) { llvm::SmallVector shape; mlir::Type elementType; @@ -108,12 +120,20 @@ void TensorDescType::print(::mlir::AsmPrinter &printer) const { } TensorDescType TensorDescType::get(llvm::ArrayRef shape, - mlir::Type elementType, bool scattered, - int array_length, MemoryScope memory_scope, - bool boundary_check) { + mlir::Type elementType, int array_length, + bool boundary_check, + MemorySpace memory_space) { + auto context = elementType.getContext(); + auto attr = BlockTensorDescAttr::get(context, memory_space, array_length, + boundary_check); + return Base::get(context, shape, elementType, attr); +} + +TensorDescType TensorDescType::get(llvm::ArrayRef shape, + mlir::Type elementType, int chunk_size, + MemorySpace memory_space) { auto context = elementType.getContext(); - auto attr = TensorDescAttr::get(context, memory_scope, array_length, - boundary_check, scattered); + auto attr = ScatterTensorDescAttr::get(context, memory_space, chunk_size); return Base::get(context, shape, elementType, attr); } diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp index 8e185b8d2586d..d0dc2a4a23ede 100644 --- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp +++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp @@ -125,6 +125,17 @@ LogicalResult CreateNdDescOp::verify() { bool invalidRank = false; bool invalidElemTy = false; + // Memory space of created TensorDesc should match with the source. + // Both source and TensorDesc are considered for global memory by default, + // if the memory scope attr is not specified. If source is an integer, + // it is considered as ptr to global memory. + auto srcMemorySpace = getSourceMemorySpace(); + auto tdescMemorySpace = static_cast(getType().getMemorySpace()); + if (srcMemorySpace != tdescMemorySpace) + return emitOpError("Memory space mismatch.") + << " Source: " << srcMemorySpace + << ", TensorDesc: " << tdescMemorySpace; + // check source type matches the rank if it is a memref. // It also should have the same ElementType as TensorDesc. auto memrefTy = dyn_cast(getSourceType()); @@ -153,9 +164,13 @@ LogicalResult CreateNdDescOp::verify() { return emitOpError("TensorDesc should have the same element " "type with the source if it is a memref.\n"); - if (getType().getScattered()) + if (getType().isScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); + if (getType().getRank() == 2 && + tdescMemorySpace == static_cast(MemorySpace::SLM)) + return emitOpError("SLM is not supported for 2D Block TensorDesc.\n"); + return success(); } @@ -164,7 +179,7 @@ LogicalResult CreateNdDescOp::verify() { //===----------------------------------------------------------------------===// LogicalResult PrefetchNdOp::verify() { auto tdescTy = getTensorDescType(); - if (tdescTy.getScattered()) + if (tdescTy.isScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); if (!isReadHintOrNone(getL1HintAttr())) @@ -189,7 +204,7 @@ LogicalResult LoadNdOp::verify() { if (tdescTy.getRank() > 2) return emitOpError("Expecting a 1D/2D TensorDesc.\n"); - if (tdescTy.getScattered()) + if (tdescTy.isScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); if (!valueTy) @@ -229,8 +244,8 @@ LogicalResult LoadNdOp::verify() { tdescShape[axis] /= vnni_factor; tdescShape.push_back(vnni_factor); } else { - return emitWarning("Invalid Packed Attr. It is ignored (available for 2D " - "TensorDesc only)."); + emitWarning("Invalid Packed Attr. It is ignored (available for 2D " + "TensorDesc only)."); } } @@ -257,7 +272,7 @@ LogicalResult StoreNdOp::verify() { if (dstTy.getRank() > 2) return emitOpError("Expecting a 1D/2D TensorDesc.\n"); - if (dstTy.getScattered()) + if (dstTy.isScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); if (!valTy) @@ -280,7 +295,7 @@ LogicalResult StoreNdOp::verify() { //===----------------------------------------------------------------------===// LogicalResult UpdateNdOffsetOp::verify() { auto ty = getTensorDescType(); - if (ty.getScattered()) + if (ty.isScattered()) return emitOpError("Expects a non-scattered TensorDesc.\n"); // number of offsets specified must match the rank of the tensor descriptor @@ -293,28 +308,55 @@ LogicalResult UpdateNdOffsetOp::verify() { //===----------------------------------------------------------------------===// // XeGPU_CreateDescOp //===----------------------------------------------------------------------===// -void CreateDescOp::build(OpBuilder &builder, OperationState &state, - TensorDescType TensorDesc, Value source, - llvm::ArrayRef offsets, - uint32_t chunk_size) { - llvm::SmallVector staticOffsets; - llvm::SmallVector dynamicOffsets; - dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets); - build(builder, state, TensorDesc, source, dynamicOffsets, staticOffsets, - chunk_size); -} LogicalResult CreateDescOp::verify() { auto tdescTy = getTensorDescType(); - auto chunkSize = getChunkSize(); if (getRankOf(getSource()) > 1) return emitOpError( "Expecting the source is a 1D memref or pointer (uint64_t)."); - if (!tdescTy.getScattered()) + if (!tdescTy.isScattered()) return emitOpError("Expects a scattered TensorDesc.\n"); + // Memory space of created TensorDesc should match with the source. + // Both source and TensorDesc are considered for global memory by default, + // if the memory scope attr is not specified. If source is an integer, + // it is considered as ptr to global memory. + auto srcMemorySpace = getSourceMemorySpace(); + auto tdescMemorySpace = static_cast(tdescTy.getMemorySpace()); + if (srcMemorySpace != tdescMemorySpace) + return emitOpError("Memory space mismatch.") + << " Source: " << srcMemorySpace + << ", TensorDesc: " << tdescMemorySpace; + + auto chunkSize = tdescTy.getChunkSize(); + + // check chunk_size + llvm::SmallVector supportedChunkSizes = {1, 2, 3, 4, 8, + 16, 32, 64, 128, 256}; + if (!llvm::is_contained(supportedChunkSizes, chunkSize)) + return emitOpError("Invalid chunk_size. Supported values are 1, 2, 3, 4, " + "8, 16, 32, 64, 128, or 256."); + + // check total size + auto elemBits = tdescTy.getElementType().getIntOrFloatBitWidth(); + auto bitsPerLane = elemBits * chunkSize; + if (chunkSize > 1 && bitsPerLane % 32) { + // For 8-bit and 16-bit data, the hardware only supports chunk size of 1. + // For 32-bit data, the hardware can support larger chunk size. So + // we can bitcast 8-bit/16-bit data to 32-bit data for better performance. + // But this requires the total size is 32 bit aligned to make the + // optimization work. + return emitOpError( + "access size (chunk_size * sizeof(elemTy)) should be 32-bit aligned."); + } + + auto lscConstraints = 512 * 8; // each access is upto 512 bytes. + if (elemBits * tdescTy.getNumElements() > lscConstraints) + return emitOpError("total access size (simd_lanes * chunk_size * " + "sizeof(elemTy)) is upto 512 bytes."); + SmallVector shape({(int64_t)getNumOffsets()}); if (chunkSize != 1) shape.push_back(chunkSize); @@ -332,7 +374,7 @@ LogicalResult CreateDescOp::verify() { //===----------------------------------------------------------------------===// LogicalResult PrefetchOp::verify() { auto tdescTy = getTensorDescType(); - if (!tdescTy.getScattered()) + if (!tdescTy.isScattered()) return emitOpError("Expects a scattered TensorDesc.\n"); if (!isReadHintOrNone(getL1HintAttr())) @@ -355,7 +397,7 @@ LogicalResult LoadGatherOp::verify() { auto maskTy = getMaskType(); auto valueTy = getValueType(); - if (!tdescTy.getScattered()) + if (!tdescTy.isScattered()) return emitOpError("Expects a scattered TensorDesc.\n"); if (!isReadHintOrNone(getL1HintAttr())) @@ -380,12 +422,10 @@ LogicalResult LoadGatherOp::verify() { if (tdescShape[0] != maskShape[0]) return emitOpError("dim-0 of the Mask and TensorDesc should be the same."); - if (getTransposeAttr()) { - auto trans = getTranspose().value(); - if (tdescShape.size() < trans.size()) - emitWarning("Invalid transpose attr. It is ignored."); - else - transpose(trans, tdescShape); + if (tdescTy.getRank() == 2) { + if (!getTransposeAttr()) + return emitOpError("load_gather has to be transposed."); + transpose({1, 0}, tdescShape); } if (valueShape != tdescShape) @@ -401,7 +441,7 @@ LogicalResult LoadGatherOp::verify() { //===----------------------------------------------------------------------===// LogicalResult StoreScatterOp::verify() { auto tdescTy = getTensorDescType(); - if (!tdescTy.getScattered()) + if (!tdescTy.isScattered()) return emitOpError("Expects a scattered TensorDesc.\n"); if (!isWriteHintOrNone(getL1HintAttr())) @@ -414,11 +454,24 @@ LogicalResult StoreScatterOp::verify() { return emitOpError("invlid l3_hint: ") << getL3HintAttr(); auto maskTy = getMaskType(); + auto valueTy = getValueType(); auto maskShape = getShapeOf(maskTy); auto tdescShape = getShapeOf(tdescTy); + auto valueShape = getShapeOf(valueTy); if (tdescShape[0] != maskShape[0]) return emitOpError("dim-0 of the Mask and TensorDesc should be the same."); + if (tdescTy.getRank() == 2) { + if (!getTransposeAttr()) + return emitOpError("load_gather has to be transposed."); + transpose({1, 0}, tdescShape); + } + + if (valueShape != tdescShape) + return emitOpError("Unexpected value shape") + << "(Expected shape: " << makeString(tdescShape) + << ", Given shape: " << makeString(valueShape) << ").\n"; + return success(); } //===----------------------------------------------------------------------===// diff --git a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir index 35d44cf56a239..c1126efb6046d 100644 --- a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir +++ b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir @@ -24,8 +24,8 @@ gpu.func @test_create_nd_tdesc_vc_2(%src: ui64, %w : index, %h : index, %x : ind // CHECK: gpu.func @test_create_nd_tdesc_vc_3(%[[arg0:.*]]: memref<24x32xf32>) { gpu.func @test_create_nd_tdesc_vc_3(%src: memref<24x32xf32>) { - // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.tdesc_attr - %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.tdesc_attr> + // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr + %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr> gpu.return } @@ -36,6 +36,13 @@ gpu.func @test_create_nd_tdesc_vc_4(%src: memref<2x24x32xf32>) { gpu.return } +// CHECK: gpu.func @test_create_nd_tdesc_vc_5(%[[arg0:.*]]: memref<2x24x32xf32, 3>) { +gpu.func @test_create_nd_tdesc_vc_5(%src: memref<2x24x32xf32, 3>) { + // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr> + %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr> + gpu.return +} + // CHECK: gpu.func @test_prefetch_nd_vc(%[[arg0:.*]]: memref<24x32xf16>) { gpu.func @test_prefetch_nd_vc(%src: memref<24x32xf16>) { // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16> @@ -97,17 +104,24 @@ gpu.func @test_create_update_nd_tdesc_vc(%src: memref<24x32xf32>) { // CHECK: gpu.func @test_create_tdesc_vc(%[[arg0:.*]]: ui64) { gpu.func @test_create_tdesc_vc(%src: ui64) { - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + gpu.return +} + +// CHECK: gpu.func @test_create_tdesc_vc_1(%[[arg0:.*]]: memref) { +gpu.func @test_create_tdesc_vc_1(%src: memref) { + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : memref -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : memref -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> gpu.return } // CHECK: gpu.func @test_prefetch_vc(%[[arg0:.*]]: ui64) { gpu.func @test_prefetch_vc(%src: ui64) { - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - // CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}>: !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + // CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> gpu.return } @@ -115,12 +129,12 @@ gpu.func @test_prefetch_vc(%src: ui64) { gpu.func @test_load_gather_vc(%src: ui64) { //CHECK: %[[cst:.*]] = arith.constant dense : vector<4xi1> %0 = arith.constant dense<1>: vector<4xi1> - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst]] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> - //CHECK-SAME: !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr>, vector<4xi1> -> vector<4x2xf32> - %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> - : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr>, vector<4xi1> -> vector<4x2xf32> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst]] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint, transpose}> + //CHECK-SAME: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr>, vector<4xi1> -> vector<2x4xf32> + %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint, transpose}> + : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr>, vector<4xi1> -> vector<2x4xf32> gpu.return } @@ -128,23 +142,23 @@ gpu.func @test_load_gather_vc(%src: ui64) { gpu.func @test_store_scatter_vc(%src: ui64) { //CHECK: %[[c0:.*]] = arith.constant dense : vector<4xi1> %0 = arith.constant dense<1>: vector<4xi1> - //CHECK: %[[c1:.*]] = arith.constant dense<2.900000e+00> : vector<4x2xf32> - %1 = arith.constant dense<2.9>: vector<4x2xf32> - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - %2 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - //CHECK: xegpu.store %[[c1]], %[[R0]], %[[c0]] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> - //CHECK-SAME: vector<4x2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr>, vector<4xi1> - xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> - : vector<4x2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr>, vector<4xi1> + //CHECK: %[[c1:.*]] = arith.constant dense<2.900000e+00> : vector<2x4xf32> + %1 = arith.constant dense<2.9>: vector<2x4xf32> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + %2 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + //CHECK: xegpu.store %[[c1]], %[[R0]], %[[c0]] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint, transpose}> + //CHECK-SAME: vector<2x4xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr>, vector<4xi1> + xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint, transpose}> + : vector<2x4xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr>, vector<4xi1> gpu.return } // CHECK: gpu.func @test_create_update_tdesc_vc(%[[arg0:.*]]: ui64) { gpu.func @test_create_update_tdesc_vc(%src: ui64) { - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> - %2 = xegpu.update_offset %1, [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24]: ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> + %2 = xegpu.update_offset %1, [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> gpu.return } @@ -165,10 +179,10 @@ gpu.func @test_dpas_vc_with_packed_b(%a : vector<8x16xf16>, %b: vector<8x16x2xf1 // CHECK: gpu.func @test_atomic_rmw(%[[arg0:.*]]: ui64, %[[arg1:.*]]: vector<16xf32>, %[[arg2:.*]]: vector<16xi1>) gpu.func @test_atomic_rmw(%src: ui64, %value : vector<16xf32>, %mask : vector<16xi1>) { - //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] : ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr> - %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]: ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr> - //CHECK: %[[R1:.*]] = xegpu.atomic_rmw addf %[[R0]], %[[arg2]], %[[arg1]] : !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr>, vector<16xi1>, vector<16xf32> -> vector<16xf32> - xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr>, vector<16xi1>, vector<16xf32> -> vector<16xf32> + //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] : ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>> + %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]: ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>> + //CHECK: %[[R1:.*]] = xegpu.atomic_rmw addf %[[R0]], %[[arg2]], %[[arg1]] : !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>, vector<16xi1>, vector<16xf32> -> vector<16xf32> + xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>, vector<16xi1>, vector<16xf32> -> vector<16xf32> gpu.return } diff --git a/mlir/test/Dialect/XeGPU/invalid.mlir b/mlir/test/Dialect/XeGPU/invalid.mlir index 7ef50bb2b5fad..193dae352e370 100644 --- a/mlir/test/Dialect/XeGPU/invalid.mlir +++ b/mlir/test/Dialect/XeGPU/invalid.mlir @@ -15,6 +15,20 @@ func.func @test_create_nd_tdesc_vc_2(%src: memref<24x32xf32>) { return } +// ----- +func.func @test_create_nd_tdesc_vc_3(%src: memref<2x24x32xf32, 3>) { + // expected-error@+1 {{SLM is not supported for 2D Block TensorDesc}} + %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<8x16xf32, #xegpu.block_tdesc_attr> + return +} + +// ----- +func.func @test_create_nd_tdesc_vc_4(%src: memref<2x24x32xf32, 3>) { + // expected-error@+1 {{Memory space mismatch}} + %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32> + return +} + // ----- func.func @test_prefetch_nd_vc_1(%src: memref<24x32xf16>) { %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16> @@ -26,10 +40,10 @@ func.func @test_prefetch_nd_vc_1(%src: memref<24x32xf16>) { // ----- func.func @test_prefetch_nd_vc_2(%src: memref<24xf16>) { %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7] - : memref<24xf16> -> !xegpu.tensor_desc<8xf16, #xegpu.tdesc_attr> + : memref<24xf16> -> !xegpu.tensor_desc<8xf16, #xegpu.scatter_tdesc_attr<>> // expected-error@+1 {{Expects a non-scattered TensorDesc}} xegpu.prefetch_nd %1 <{l1_hint = #xegpu.cache_hint}> - : !xegpu.tensor_desc<8xf16, #xegpu.tdesc_attr> + : !xegpu.tensor_desc<8xf16, #xegpu.scatter_tdesc_attr<>> return } @@ -44,11 +58,11 @@ func.func @test_load_nd_vc_1(%src: memref<8x16xf16>) { // ----- func.func @test_load_nd_vc_2(%src: memref<16xf16>) { - %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} - : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr> + %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] + : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr> // expected-error@+1 {{Expects a non-scattered TensorDesc.}} %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint}> - : !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr> -> vector<8x2xf16> + : !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr> -> vector<8x2xf16> return } @@ -73,28 +87,28 @@ func.func @test_store_nd_vc_1(%dst: memref<24x32xf16>) { // ----- func.func @test_store_nd_vc_2(%dst: memref<16xf16>) { %1 = arith.constant dense<1.0>: vector<8x2xf16> - %2 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} - : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr> + %2 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] + : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr> // expected-error@+1 {{Expects a non-scattered TensorDesc}} xegpu.store_nd %1, %2 <{l1_hint = #xegpu.cache_hint}> - : vector<8x2xf16>, !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr> + : vector<8x2xf16>, !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr> return } // ----- func.func @test_update_nd_offset_1(%dst: memref<16xf16>) { - %1 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} - : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr> + %1 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] + : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr> // expected-error@+1 {{Expects a non-scattered TensorDesc}} - xegpu.update_nd_offset %1, [0, 2] : !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr> + xegpu.update_nd_offset %1, [0, 2] : !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr> return } // ----- func.func @test_create_tdesc_vc_1(%src: ui64) { // expected-error@+1 {{Expects a scattered TensorDesc}} - %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} - : ui64 -> !xegpu.tensor_desc<8x2xf16> + %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] + : ui64 -> !xegpu.tensor_desc<8xf16> return } @@ -102,7 +116,14 @@ func.func @test_create_tdesc_vc_1(%src: ui64) { func.func @test_create_tdesc_vc_2(%src: ui64) { // expected-error@+1 {{Incorrect TensorDesc shape}} %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2} - : ui64 -> !xegpu.tensor_desc<8x4xf16, #xegpu.tdesc_attr> + : ui64 -> !xegpu.tensor_desc<8x4xf16, #xegpu.scatter_tdesc_attr<>> + return +} + +// ----- +func.func @test_create_tdesc_vc_1(%src: memref) { + // expected-error@+1 {{Memory space mismatch}} + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : memref -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> return } @@ -116,9 +137,9 @@ func.func @test_prefetch_vc_1(%src: memref<24x32xf16>) { // ----- func.func @test_prefetch_vc_2(%src: ui64) { - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> // expected-error@+1 {{invlid l1_hint: #xegpu.cache_hint}} - xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint}>: !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> + xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> return } @@ -135,11 +156,11 @@ func.func @test_load_gather_vc_1(%src: memref<24x32xf16>) { // ----- func.func @test_load_gather_vc_2(%src: ui64) { %0 = arith.constant dense<1>: vector<4xi1> - %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 - -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> + %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 + -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> // expected-error@+1 {{invlid l1_hint: #xegpu.cache_hint}} %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint}> - : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr>, vector<4xi1> + : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr>, vector<4xi1> -> vector<4x2xf32> return } @@ -159,11 +180,11 @@ func.func @test_store_scatter_vc_1(%src: memref<24x32xf32>) { func.func @test_store_scatter_vc_2(%src: ui64) { %0 = arith.constant dense<1>: vector<4xi1> %1 = arith.constant dense<2.9>: vector<4x2xf32> - %2 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} - : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr> + %2 = xegpu.create_tdesc %src[0, 8, 16, 24] + : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr> // expected-error@+1 {{invlid l1_hint: #xegpu.cache_hint}} xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint}> : vector<4x2xf32>, - !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr>, vector<4xi1> + !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr>, vector<4xi1> return } @@ -182,9 +203,9 @@ func.func @test_dpas_vc_2(%a : vector<8x8x2xf16>, %b: vector<8x16x2xf16>) { } // ----- -func.func @test_atomic_rmw(%src: ui64, %value : vector<16x8xf32>, %mask : vector<16xi1>) { - %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] {chunk_size = 8}: ui64 -> !xegpu.tensor_desc<16x8xf32, #xegpu.tdesc_attr> - // expected-error@+1 {{failed to verify that all of {tensorDesc, mask, value, result} have same shape}} - xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16x8xf32, #xegpu.tdesc_attr>, vector<16xi1>, vector<16x8xf32> -> vector<16x8xf32> - gpu.return +func.func @test_atomic_rmw(%src: ui64, %value : vector<16x4xf32>, %mask : vector<16xi1>) { + %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] : ui64 -> !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr> + // expected-error@+1 {{failed to verify that all of {tensorDesc, value, result} have same shape}} + xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr>, vector<16xi1>, vector<16x4xf32> -> vector<16x8xf32> + return } \ No newline at end of file