|
| 1 | +//===-- Implementation header for atanf -------------------------*- C++ -*-===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | + |
| 9 | +#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ATANF_H |
| 10 | +#define LLVM_LIBC_SRC___SUPPORT_MATH_ATANF_H |
| 11 | + |
| 12 | +#include "inv_trigf_utils.h" |
| 13 | +#include "src/__support/FPUtil/FPBits.h" |
| 14 | +#include "src/__support/FPUtil/PolyEval.h" |
| 15 | +#include "src/__support/FPUtil/except_value_utils.h" |
| 16 | +#include "src/__support/FPUtil/multiply_add.h" |
| 17 | +#include "src/__support/FPUtil/nearest_integer.h" |
| 18 | +#include "src/__support/macros/config.h" |
| 19 | +#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 20 | + |
| 21 | +namespace LIBC_NAMESPACE_DECL { |
| 22 | + |
| 23 | +namespace math { |
| 24 | + |
| 25 | +LIBC_INLINE static constexpr float atanf(float x) { |
| 26 | + using namespace inv_trigf_utils_internal; |
| 27 | + using FPBits = typename fputil::FPBits<float>; |
| 28 | + |
| 29 | + constexpr double FINAL_SIGN[2] = {1.0, -1.0}; |
| 30 | + constexpr double SIGNED_PI_OVER_2[2] = {0x1.921fb54442d18p0, |
| 31 | + -0x1.921fb54442d18p0}; |
| 32 | + |
| 33 | + FPBits x_bits(x); |
| 34 | + Sign sign = x_bits.sign(); |
| 35 | + x_bits.set_sign(Sign::POS); |
| 36 | + uint32_t x_abs = x_bits.uintval(); |
| 37 | + |
| 38 | + // x is inf or nan, |x| < 2^-4 or |x|= > 16. |
| 39 | + if (LIBC_UNLIKELY(x_abs <= 0x3d80'0000U || x_abs >= 0x4180'0000U)) { |
| 40 | + double x_d = static_cast<double>(x); |
| 41 | + double const_term = 0.0; |
| 42 | + if (LIBC_UNLIKELY(x_abs >= 0x4180'0000)) { |
| 43 | + // atan(+-Inf) = +-pi/2. |
| 44 | + if (x_bits.is_inf()) { |
| 45 | + volatile double sign_pi_over_2 = SIGNED_PI_OVER_2[sign.is_neg()]; |
| 46 | + return static_cast<float>(sign_pi_over_2); |
| 47 | + } |
| 48 | + if (x_bits.is_nan()) |
| 49 | + return x; |
| 50 | + // x >= 16 |
| 51 | + x_d = -1.0 / x_d; |
| 52 | + const_term = SIGNED_PI_OVER_2[sign.is_neg()]; |
| 53 | + } |
| 54 | + // 0 <= x < 1/16; |
| 55 | + if (LIBC_UNLIKELY(x_bits.is_zero())) |
| 56 | + return x; |
| 57 | + // x <= 2^-12; |
| 58 | + if (LIBC_UNLIKELY(x_abs < 0x3980'0000)) { |
| 59 | +#if defined(LIBC_TARGET_CPU_HAS_FMA_FLOAT) |
| 60 | + return fputil::multiply_add(x, -0x1.0p-25f, x); |
| 61 | +#else |
| 62 | + double x_d = static_cast<double>(x); |
| 63 | + return static_cast<float>(fputil::multiply_add(x_d, -0x1.0p-25, x_d)); |
| 64 | +#endif // LIBC_TARGET_CPU_HAS_FMA_FLOAT |
| 65 | + } |
| 66 | + // Use Taylor polynomial: |
| 67 | + // atan(x) ~ x * (1 - x^2 / 3 + x^4 / 5 - x^6 / 7 + x^8 / 9 - x^10 / 11). |
| 68 | + constexpr double ATAN_TAYLOR[6] = { |
| 69 | + 0x1.0000000000000p+0, -0x1.5555555555555p-2, 0x1.999999999999ap-3, |
| 70 | + -0x1.2492492492492p-3, 0x1.c71c71c71c71cp-4, -0x1.745d1745d1746p-4, |
| 71 | + }; |
| 72 | + double x2 = x_d * x_d; |
| 73 | + double x4 = x2 * x2; |
| 74 | + double c0 = fputil::multiply_add(x2, ATAN_TAYLOR[1], ATAN_TAYLOR[0]); |
| 75 | + double c1 = fputil::multiply_add(x2, ATAN_TAYLOR[3], ATAN_TAYLOR[2]); |
| 76 | + double c2 = fputil::multiply_add(x2, ATAN_TAYLOR[5], ATAN_TAYLOR[4]); |
| 77 | + double p = fputil::polyeval(x4, c0, c1, c2); |
| 78 | + double r = fputil::multiply_add(x_d, p, const_term); |
| 79 | + return static_cast<float>(r); |
| 80 | + } |
| 81 | + |
| 82 | + // Range reduction steps: |
| 83 | + // 1) atan(x) = sign(x) * atan(|x|) |
| 84 | + // 2) If |x| > 1, atan(|x|) = pi/2 - atan(1/|x|) |
| 85 | + // 3) For 1/16 < x <= 1, we find k such that: |x - k/16| <= 1/32. |
| 86 | + // 4) Then we use polynomial approximation: |
| 87 | + // atan(x) ~ atan((k/16) + (x - (k/16)) * Q(x - k/16) |
| 88 | + // = P(x - k/16) |
| 89 | + double x_d = 0, const_term = 0, final_sign = 0; |
| 90 | + int idx = 0; |
| 91 | + |
| 92 | + if (x_abs > 0x3f80'0000U) { |
| 93 | + // |x| > 1, we need to invert x, so we will perform range reduction in |
| 94 | + // double precision. |
| 95 | + x_d = 1.0 / static_cast<double>(x_bits.get_val()); |
| 96 | + double k_d = fputil::nearest_integer(x_d * 0x1.0p4); |
| 97 | + x_d = fputil::multiply_add(k_d, -0x1.0p-4, x_d); |
| 98 | + idx = static_cast<int>(k_d); |
| 99 | + final_sign = FINAL_SIGN[sign.is_pos()]; |
| 100 | + // Adjust constant term of the polynomial by +- pi/2. |
| 101 | + const_term = fputil::multiply_add(final_sign, ATAN_COEFFS[idx][0], |
| 102 | + SIGNED_PI_OVER_2[sign.is_neg()]); |
| 103 | + } else { |
| 104 | + // Exceptional value: |
| 105 | + if (LIBC_UNLIKELY(x_abs == 0x3d8d'6b23U)) { // |x| = 0x1.1ad646p-4 |
| 106 | + return sign.is_pos() ? fputil::round_result_slightly_down(0x1.1a6386p-4f) |
| 107 | + : fputil::round_result_slightly_up(-0x1.1a6386p-4f); |
| 108 | + } |
| 109 | + // Perform range reduction in single precision. |
| 110 | + float x_f = x_bits.get_val(); |
| 111 | + float k_f = fputil::nearest_integer(x_f * 0x1.0p4f); |
| 112 | + x_f = fputil::multiply_add(k_f, -0x1.0p-4f, x_f); |
| 113 | + x_d = static_cast<double>(x_f); |
| 114 | + idx = static_cast<int>(k_f); |
| 115 | + final_sign = FINAL_SIGN[sign.is_neg()]; |
| 116 | + const_term = final_sign * ATAN_COEFFS[idx][0]; |
| 117 | + } |
| 118 | + |
| 119 | + double p = atan_eval(x_d, idx); |
| 120 | + double r = fputil::multiply_add(final_sign * x_d, p, const_term); |
| 121 | + |
| 122 | + return static_cast<float>(r); |
| 123 | +} |
| 124 | + |
| 125 | +} // namespace math |
| 126 | + |
| 127 | +} // namespace LIBC_NAMESPACE_DECL |
| 128 | + |
| 129 | +#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ATANF_H |
0 commit comments