|
| 1 | +//===-- Implementation header for acosf -------------------------*- C++ -*-===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | + |
| 9 | +#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ACOSF_H |
| 10 | +#define LLVM_LIBC_SRC___SUPPORT_MATH_ACOSF_H |
| 11 | + |
| 12 | +#include "inv_trigf_utils.h" |
| 13 | +#include "src/__support/FPUtil/FEnvImpl.h" |
| 14 | +#include "src/__support/FPUtil/FPBits.h" |
| 15 | +#include "src/__support/FPUtil/except_value_utils.h" |
| 16 | +#include "src/__support/FPUtil/multiply_add.h" |
| 17 | +#include "src/__support/FPUtil/sqrt.h" |
| 18 | +#include "src/__support/macros/config.h" |
| 19 | +#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 20 | + |
| 21 | +namespace LIBC_NAMESPACE_DECL { |
| 22 | + |
| 23 | +namespace math { |
| 24 | + |
| 25 | +#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 26 | +static constexpr size_t N_EXCEPTS = 4; |
| 27 | + |
| 28 | +// Exceptional values when |x| <= 0.5 |
| 29 | +static constexpr fputil::ExceptValues<float, N_EXCEPTS> ACOSF_EXCEPTS = {{ |
| 30 | + // (inputs, RZ output, RU offset, RD offset, RN offset) |
| 31 | + // x = 0x1.110b46p-26, acosf(x) = 0x1.921fb4p0 (RZ) |
| 32 | + {0x328885a3, 0x3fc90fda, 1, 0, 1}, |
| 33 | + // x = -0x1.110b46p-26, acosf(x) = 0x1.921fb4p0 (RZ) |
| 34 | + {0xb28885a3, 0x3fc90fda, 1, 0, 1}, |
| 35 | + // x = 0x1.04c444p-12, acosf(x) = 0x1.920f68p0 (RZ) |
| 36 | + {0x39826222, 0x3fc907b4, 1, 0, 1}, |
| 37 | + // x = -0x1.04c444p-12, acosf(x) = 0x1.923p0 (RZ) |
| 38 | + {0xb9826222, 0x3fc91800, 1, 0, 1}, |
| 39 | +}}; |
| 40 | +#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 41 | + |
| 42 | +static constexpr float acosf(float x) { |
| 43 | + using FPBits = typename fputil::FPBits<float>; |
| 44 | + |
| 45 | + FPBits xbits(x); |
| 46 | + uint32_t x_uint = xbits.uintval(); |
| 47 | + uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; |
| 48 | + uint32_t x_sign = x_uint >> 31; |
| 49 | + |
| 50 | + // |x| <= 0.5 |
| 51 | + if (LIBC_UNLIKELY(x_abs <= 0x3f00'0000U)) { |
| 52 | + // |x| < 0x1p-10 |
| 53 | + if (LIBC_UNLIKELY(x_abs < 0x3a80'0000U)) { |
| 54 | + // When |x| < 2^-10, we use the following approximation: |
| 55 | + // acos(x) = pi/2 - asin(x) |
| 56 | + // ~ pi/2 - x - x^3 / 6 |
| 57 | + |
| 58 | +#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 59 | + // Check for exceptional values |
| 60 | + if (auto r = ACOSF_EXCEPTS.lookup(x_uint); LIBC_UNLIKELY(r.has_value())) |
| 61 | + return r.value(); |
| 62 | +#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 63 | + |
| 64 | + double xd = static_cast<double>(x); |
| 65 | + return static_cast<float>(fputil::multiply_add( |
| 66 | + -0x1.5555555555555p-3 * xd, xd * xd, M_MATH_PI_2 - xd)); |
| 67 | + } |
| 68 | + |
| 69 | + // For |x| <= 0.5, we approximate acosf(x) by: |
| 70 | + // acos(x) = pi/2 - asin(x) = pi/2 - x * P(x^2) |
| 71 | + // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating |
| 72 | + // asin(x)/x on [0, 0.5] generated by Sollya with: |
| 73 | + // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], |
| 74 | + // [|1, D...|], [0, 0.5]); |
| 75 | + double xd = static_cast<double>(x); |
| 76 | + double xsq = xd * xd; |
| 77 | + double x3 = xd * xsq; |
| 78 | + double r = asin_eval(xsq); |
| 79 | + return static_cast<float>(fputil::multiply_add(-x3, r, M_MATH_PI_2 - xd)); |
| 80 | + } |
| 81 | + |
| 82 | + // |x| >= 1, return 0, 2pi, or NaNs. |
| 83 | + if (LIBC_UNLIKELY(x_abs >= 0x3f80'0000U)) { |
| 84 | + if (x_abs == 0x3f80'0000U) |
| 85 | + return x_sign ? /* x == -1.0f */ fputil::round_result_slightly_down( |
| 86 | + 0x1.921fb6p+1f) |
| 87 | + : /* x == 1.0f */ 0.0f; |
| 88 | + |
| 89 | + if (xbits.is_signaling_nan()) { |
| 90 | + fputil::raise_except_if_required(FE_INVALID); |
| 91 | + return FPBits::quiet_nan().get_val(); |
| 92 | + } |
| 93 | + |
| 94 | + // |x| <= +/-inf |
| 95 | + if (x_abs <= 0x7f80'0000U) { |
| 96 | + fputil::set_errno_if_required(EDOM); |
| 97 | + fputil::raise_except_if_required(FE_INVALID); |
| 98 | + } |
| 99 | + |
| 100 | + return x + FPBits::quiet_nan().get_val(); |
| 101 | + } |
| 102 | + |
| 103 | + // When 0.5 < |x| < 1, we perform range reduction as follow: |
| 104 | + // |
| 105 | + // Assume further that 0.5 < x <= 1, and let: |
| 106 | + // y = acos(x) |
| 107 | + // We use the double angle formula: |
| 108 | + // x = cos(y) = 1 - 2 sin^2(y/2) |
| 109 | + // So: |
| 110 | + // sin(y/2) = sqrt( (1 - x)/2 ) |
| 111 | + // And hence: |
| 112 | + // y = 2 * asin( sqrt( (1 - x)/2 ) ) |
| 113 | + // Let u = (1 - x)/2, then |
| 114 | + // acos(x) = 2 * asin( sqrt(u) ) |
| 115 | + // Moreover, since 0.5 < x <= 1, |
| 116 | + // 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5, |
| 117 | + // And hence we can reuse the same polynomial approximation of asin(x) when |
| 118 | + // |x| <= 0.5: |
| 119 | + // acos(x) ~ 2 * sqrt(u) * P(u). |
| 120 | + // |
| 121 | + // When -1 < x <= -0.5, we use the identity: |
| 122 | + // acos(x) = pi - acos(-x) |
| 123 | + // which is reduced to the postive case. |
| 124 | + |
| 125 | + xbits.set_sign(Sign::POS); |
| 126 | + double xd = static_cast<double>(xbits.get_val()); |
| 127 | + double u = fputil::multiply_add(-0.5, xd, 0.5); |
| 128 | + double cv = 2 * fputil::sqrt<double>(u); |
| 129 | + |
| 130 | + double r3 = asin_eval(u); |
| 131 | + double r = fputil::multiply_add(cv * u, r3, cv); |
| 132 | + return static_cast<float>(x_sign ? M_MATH_PI - r : r); |
| 133 | +} |
| 134 | + |
| 135 | +} // namespace math |
| 136 | + |
| 137 | +} // namespace LIBC_NAMESPACE_DECL |
| 138 | + |
| 139 | +#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ACOS_H |
0 commit comments