|
| 1 | +/* |
| 2 | +CSES - Building Teams |
| 3 | +Link: https://cses.fi/problemset/task/1668 |
| 4 | +Difficulty: Medium |
| 5 | +Time Complexity: O(N + M) |
| 6 | +Space Complexity: O(N + M) |
| 7 | +
|
| 8 | +Approach: |
| 9 | +Use graph coloring (bipartite check) with BFS to assign pupils to two teams. |
| 10 | +Each pupil is a node and each friendship is an undirected edge. We attempt to color |
| 11 | +the graph with two colors (1 and 2) so that no adjacent nodes share the same color. |
| 12 | +Process every connected component (graph may be disconnected). |
| 13 | +
|
| 14 | +Key Insights: |
| 15 | +- A graph is bipartite iff it is 2-colorable (no odd-length cycles). |
| 16 | +- BFS is used to color level-by-level: if current node has color c, all uncolored |
| 17 | + neighbors get color 3 - c. |
| 18 | +- If an edge connects two nodes with the same color, the graph is not bipartite, |
| 19 | + and the answer is "IMPOSSIBLE". |
| 20 | +- Iterative BFS avoids recursion depth issues on large inputs. |
| 21 | +*/ |
| 22 | + |
| 23 | +#include <bits/stdc++.h> |
| 24 | +using namespace std; |
| 25 | + |
| 26 | +int main() { |
| 27 | + ios::sync_with_stdio(false); |
| 28 | + cin.tie(nullptr); |
| 29 | + |
| 30 | + // Read number of pupils (n) and friendships (m) |
| 31 | + int n, m; |
| 32 | + cin >> n >> m; |
| 33 | + |
| 34 | + // Build adjacency list for 1-indexed nodes |
| 35 | + vector<vector<int>> adj(n + 1); |
| 36 | + for (int i = 0; i < m; ++i) { |
| 37 | + int a, b; |
| 38 | + cin >> a >> b; |
| 39 | + // undirected friendship edge |
| 40 | + adj[a].push_back(b); |
| 41 | + adj[b].push_back(a); |
| 42 | + } |
| 43 | + |
| 44 | + // color[i] = 0 -> unvisited, 1 or 2 -> team assignment |
| 45 | + vector<int> color(n + 1, 0); |
| 46 | + |
| 47 | + // Process all components to handle disconnected graphs |
| 48 | + for (int start = 1; start <= n; ++start) { |
| 49 | + // If already colored in previous BFS, skip |
| 50 | + if (color[start] != 0) continue; |
| 51 | + |
| 52 | + // Start BFS from this unvisited node, assign color 1 |
| 53 | + queue<int> q; |
| 54 | + color[start] = 1; |
| 55 | + q.push(start); |
| 56 | + |
| 57 | + // Standard BFS loop |
| 58 | + while (!q.empty()) { |
| 59 | + int u = q.front(); |
| 60 | + q.pop(); |
| 61 | + |
| 62 | + // Check all neighbors of u |
| 63 | + for (int v : adj[u]) { |
| 64 | + if (color[v] == 0) { |
| 65 | + // Assign the opposite color to the neighbor |
| 66 | + color[v] = 3 - color[u]; // 1 -> 2, 2 -> 1 |
| 67 | + q.push(v); |
| 68 | + } else if (color[v] == color[u]) { |
| 69 | + // Conflict detected: same color on both ends of an edge |
| 70 | + cout << "IMPOSSIBLE\n"; |
| 71 | + return 0; |
| 72 | + } |
| 73 | + } |
| 74 | + } |
| 75 | + } |
| 76 | + |
| 77 | + // If we reach here, graph is bipartite; print team assignments |
| 78 | + for (int i = 1; i <= n; ++i) { |
| 79 | + if (i > 1) cout << ' '; |
| 80 | + cout << color[i]; |
| 81 | + } |
| 82 | + cout << '\n'; |
| 83 | + return 0; |
| 84 | +} |
0 commit comments