|
15 | 15 | # limitations under the License. |
16 | 16 | # |
17 | 17 |
|
18 | | -from pyspark.sql import SchemaRDD, ArrayType, StringType, inherit_doc |
19 | | -from pyspark.ml import Transformer, _jvm |
| 18 | +from pyspark.sql import inherit_doc |
| 19 | +from pyspark.ml import JavaTransformer |
20 | 20 | from pyspark.ml.param import Param |
| 21 | +from pyspark.ml.param.shared import HasInputCol, HasOutputCol |
| 22 | + |
21 | 23 |
|
22 | 24 | @inherit_doc |
23 | | -class Tokenizer(Transformer): |
| 25 | +class Tokenizer(JavaTransformer, HasInputCol, HasOutputCol): |
24 | 26 |
|
25 | 27 | def __init__(self): |
26 | 28 | super(Tokenizer, self).__init__() |
27 | | - self.inputCol = Param(self, "inputCol", "input column name", None) |
28 | | - self.outputCol = Param(self, "outputCol", "output column name", None) |
29 | | - self.paramMap = {} |
30 | | - |
31 | | - def setInputCol(self, value): |
32 | | - self.paramMap[self.inputCol] = value |
33 | | - return self |
34 | | - |
35 | | - def getInputCol(self): |
36 | | - if self.inputCol in self.paramMap: |
37 | | - return self.paramMap[self.inputCol] |
38 | 29 |
|
39 | | - def setOutputCol(self, value): |
40 | | - self.paramMap[self.outputCol] = value |
41 | | - return self |
42 | | - |
43 | | - def getOutputCol(self): |
44 | | - if self.outputCol in self.paramMap: |
45 | | - return self.paramMap[self.outputCol] |
46 | | - |
47 | | - def transform(self, dataset, params={}): |
48 | | - sqlCtx = dataset.sql_ctx |
49 | | - if isinstance(params, dict): |
50 | | - paramMap = self.paramMap.copy() |
51 | | - paramMap.update(params) |
52 | | - inputCol = paramMap[self.inputCol] |
53 | | - outputCol = paramMap[self.outputCol] |
54 | | - # TODO: make names unique |
55 | | - sqlCtx.registerFunction("tokenize", lambda text: text.split(), |
56 | | - ArrayType(StringType(), False)) |
57 | | - dataset.registerTempTable("dataset") |
58 | | - return sqlCtx.sql("SELECT *, tokenize(%s) AS %s FROM dataset" % (inputCol, outputCol)) |
59 | | - elif isinstance(params, list): |
60 | | - return [self.transform(dataset, paramMap) for paramMap in params] |
61 | | - else: |
62 | | - raise ValueError("The input params must be either a dict or a list.") |
| 30 | + @property |
| 31 | + def _java_class(self): |
| 32 | + return "org.apache.spark.ml.feature.Tokenizer" |
63 | 33 |
|
64 | 34 |
|
65 | 35 | @inherit_doc |
66 | | -class HashingTF(Transformer): |
| 36 | +class HashingTF(JavaTransformer, HasInputCol, HasOutputCol): |
67 | 37 |
|
68 | 38 | def __init__(self): |
69 | 39 | super(HashingTF, self).__init__() |
70 | | - self._java_obj = _jvm().org.apache.spark.ml.feature.HashingTF() |
| 40 | + #: param for number of features |
71 | 41 | self.numFeatures = Param(self, "numFeatures", "number of features", 1 << 18) |
72 | | - self.inputCol = Param(self, "inputCol", "input column name") |
73 | | - self.outputCol = Param(self, "outputCol", "output column name") |
| 42 | + |
| 43 | + @property |
| 44 | + def _java_class(self): |
| 45 | + return "org.apache.spark.ml.feature.HashingTF" |
74 | 46 |
|
75 | 47 | def setNumFeatures(self, value): |
76 | | - self._java_obj.setNumFeatures(value) |
| 48 | + self.paramMap[self.numFeatures] = value |
77 | 49 | return self |
78 | 50 |
|
79 | 51 | def getNumFeatures(self): |
80 | | - return self._java_obj.getNumFeatures() |
81 | | - |
82 | | - def setInputCol(self, value): |
83 | | - self._java_obj.setInputCol(value) |
84 | | - return self |
85 | | - |
86 | | - def getInputCol(self): |
87 | | - return self._java_obj.getInputCol() |
88 | | - |
89 | | - def setOutputCol(self, value): |
90 | | - self._java_obj.setOutputCol(value) |
91 | | - return self |
92 | | - |
93 | | - def getOutputCol(self): |
94 | | - return self._java_obj.getOutputCol() |
95 | | - |
96 | | - def transform(self, dataset, paramMap={}): |
97 | | - if isinstance(paramMap, dict): |
98 | | - javaParamMap = _jvm().org.apache.spark.ml.param.ParamMap() |
99 | | - for k, v in paramMap.items(): |
100 | | - param = self._java_obj.getParam(k.name) |
101 | | - javaParamMap.put(param, v) |
102 | | - return SchemaRDD(self._java_obj.transform(dataset._jschema_rdd, javaParamMap), |
103 | | - dataset.sql_ctx) |
| 52 | + if self.numFeatures in self.paramMap: |
| 53 | + return self.paramMap[self.numFeatures] |
104 | 54 | else: |
105 | | - raise ValueError("paramMap must be a dict.") |
| 55 | + return self.numFeatures.defaultValue |
0 commit comments