|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one or more |
| 3 | + * contributor license agreements. See the NOTICE file distributed with |
| 4 | + * this work for additional information regarding copyright ownership. |
| 5 | + * The ASF licenses this file to You under the Apache License, Version 2.0 |
| 6 | + * (the "License"); you may not use this file except in compliance with |
| 7 | + * the License. You may obtain a copy of the License at |
| 8 | + * |
| 9 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | + * |
| 11 | + * Unless required by applicable law or agreed to in writing, software |
| 12 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | + * See the License for the specific language governing permissions and |
| 15 | + * limitations under the License. |
| 16 | + */ |
| 17 | + |
| 18 | +package org.apache.spark.ml.feature |
| 19 | + |
| 20 | +import org.scalatest.FunSuite |
| 21 | + |
| 22 | +import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector, Vectors} |
| 23 | +import org.apache.spark.mllib.util.MLlibTestSparkContext |
| 24 | +import org.apache.spark.mllib.util.TestingUtils._ |
| 25 | +import org.apache.spark.sql.{DataFrame, Row, SQLContext} |
| 26 | + |
| 27 | +private case class DataSet(features: Vector) |
| 28 | + |
| 29 | +class PolynomialMapperSuite extends FunSuite with MLlibTestSparkContext { |
| 30 | + |
| 31 | + @transient var data: Array[Vector] = _ |
| 32 | + @transient var dataFrame: DataFrame = _ |
| 33 | + @transient var polynomialMapper: PolynomialMapper = _ |
| 34 | + @transient var oneDegreeExpansion: Array[Vector] = _ |
| 35 | + @transient var threeDegreeExpansion: Array[Vector] = _ |
| 36 | + |
| 37 | + override def beforeAll(): Unit = { |
| 38 | + super.beforeAll() |
| 39 | + |
| 40 | + data = Array( |
| 41 | + Vectors.sparse(3, Seq((0, -2.0), (1, 2.3))), |
| 42 | + Vectors.dense(0.0, 0.0, 0.0), |
| 43 | + Vectors.dense(0.6, -1.1, -3.0), |
| 44 | + Vectors.sparse(3, Seq((1, 0.91), (2, 3.2))), |
| 45 | + Vectors.sparse(3, Seq((0, 5.7), (1, 0.72), (2, 2.7))), |
| 46 | + Vectors.sparse(3, Seq()) |
| 47 | + ) |
| 48 | + oneDegreeExpansion = data |
| 49 | + threeDegreeExpansion = Array( |
| 50 | + Vectors.sparse(3, Seq((0, -0.65617871), (1, 0.75460552))), |
| 51 | + Vectors.dense(0.0, 0.0, 0.0), |
| 52 | + Vectors.dense(0.184549876, -0.3383414, -0.922749378), |
| 53 | + Vectors.sparse(3, Seq((1, 0.27352993), (2, 0.96186349))), |
| 54 | + Vectors.dense(0.897906166, 0.113419726, 0.42532397), |
| 55 | + Vectors.sparse(3, Seq()) |
| 56 | + ) |
| 57 | + |
| 58 | + val sqlContext = new SQLContext(sc) |
| 59 | + dataFrame = sqlContext.createDataFrame(sc.parallelize(data, 2).map(DataSet)) |
| 60 | + polynomialMapper = new PolynomialMapper() |
| 61 | + .setInputCol("features") |
| 62 | + .setOutputCol("poly_features") |
| 63 | + } |
| 64 | + |
| 65 | + def collectResult(result: DataFrame): Array[Vector] = { |
| 66 | + result.select("poly_features").collect().map { |
| 67 | + case Row(features: Vector) => features |
| 68 | + } |
| 69 | + } |
| 70 | + |
| 71 | + def assertTypeOfVector(lhs: Array[Vector], rhs: Array[Vector]): Unit = { |
| 72 | + assert((lhs, rhs).zipped.forall { |
| 73 | + case (v1: DenseVector, v2: DenseVector) => true |
| 74 | + case (v1: SparseVector, v2: SparseVector) => true |
| 75 | + case _ => false |
| 76 | + }, "The vector type should be preserved after normalization.") |
| 77 | + } |
| 78 | + |
| 79 | + def assertValues(lhs: Array[Vector], rhs: Array[Vector]): Unit = { |
| 80 | + assert((lhs, rhs).zipped.forall { (vector1, vector2) => |
| 81 | + vector1 ~== vector2 absTol 1E-5 |
| 82 | + }, "The vector value is not correct after normalization.") |
| 83 | + } |
| 84 | + |
| 85 | + test("Polynomial expansion with default parameter") { |
| 86 | + val result = collectResult(polynomialMapper.transform(dataFrame)) |
| 87 | + |
| 88 | + assertTypeOfVector(data, result) |
| 89 | + |
| 90 | + assertValues(result, oneDegreeExpansion) |
| 91 | + } |
| 92 | + |
| 93 | + test("Polynomial expansion with setter") { |
| 94 | + polynomialMapper.setDegree(3) |
| 95 | + |
| 96 | + val result = collectResult(polynomialMapper.transform(dataFrame)) |
| 97 | + |
| 98 | + assertTypeOfVector(data, result) |
| 99 | + |
| 100 | + assertValues(result, threeDegreeExpansion) |
| 101 | + } |
| 102 | +} |
| 103 | + |
0 commit comments