@@ -149,6 +149,22 @@ def tensorboard(self, tensorboard):
149149class BenchmarkConfig :
150150 """Config Class for Benchmark.
151151
152+ Args:
153+ inputs (list, optional): A list of strings containing the inputs of model. Default is an empty list.
154+ outputs (list, optional): A list of strings containing the outputs of model. Default is an empty list.
155+ backend (str, optional): Backend name for model execution. Supported values include: 'default', 'itex',
156+ 'ipex', 'onnxrt_trt_ep', 'onnxrt_cuda_ep'. Default value is 'default'.
157+ warmup (int, optional): The number of iterations to perform warmup before running performance tests.
158+ Default value is 5.
159+ iteration (int, optional): The number of iterations to run performance tests. Default is -1.
160+ cores_per_instance (int, optional): The number of CPU cores to use per instance. Default value is None.
161+ num_of_instance (int, optional): The number of instances to use for performance testing.
162+ Default value is None.
163+ inter_num_of_threads (int, optional): The number of threads to use for inter-thread operations.
164+ Default value is None.
165+ intra_num_of_threads (int, optional): The number of threads to use for intra-thread operations.
166+ Default value is None.
167+
152168 Example::
153169
154170 # Run benchmark according to config
@@ -1156,6 +1172,21 @@ def teacher_model(self, teacher_model):
11561172
11571173class MixedPrecisionConfig (_BaseQuantizationConfig ):
11581174 """Config Class for MixedPrecision.
1175+
1176+ Args:
1177+ device (str, optional): device for execution. Support 'cpu' and 'gpu', default is 'cpu'
1178+ backend (str, optional): backend for model execution. Support 'default', 'itex', 'ipex',
1179+ 'onnxrt_trt_ep', 'onnxrt_cuda_ep', default is 'default'
1180+ precision (str, optional): target precision for mix precision conversion.
1181+ Support 'bf16' and 'fp16', default is 'bf16'
1182+ inputs (list, optional): inputs of model, default is []
1183+ outputs (list, optional): outputs of model, default is []
1184+ tuning_criterion (TuningCriterion object, optional): accuracy tuning settings, it won't work
1185+ if there is no accuracy tuning process
1186+ accuracy_criterion (AccuracyCriterion object, optional): accuracy constraint settings, it won't
1187+ work if there is no accuracy tuning process
1188+ excluded_precisions (list, optional): precisions to be excluded during mix precision conversion,
1189+ default is []
11591190
11601191 Example::
11611192
@@ -1330,7 +1361,28 @@ def __init__(
13301361
13311362
13321363class TF2ONNXConfig (ExportConfig ):
1333- """Config Class for TF2ONNX."""
1364+ """Config Class for TF2ONNX.
1365+
1366+ Args:
1367+ dtype (str, optional): The data type of export target model. Supports 'fp32' and 'int8'.
1368+ Defaults to 'int8'.
1369+ opset_version (int, optional): The version of the ONNX operator set to use. Defaults to 14.
1370+ quant_format (str, optional): The quantization format for the export target model.
1371+ Supports 'default', 'QDQ' and 'QOperator'. Defaults to 'QDQ'.
1372+ example_inputs (list, optional): A list example inputs to use for tracing the model.
1373+ Defaults to None.
1374+ input_names (list, optional): A list of model input names. Defaults to None.
1375+ output_names (list, optional): A list of model output names. Defaults to None.
1376+ dynamic_axes (dict, optional): A dictionary of dynamic axis information. Defaults to None.
1377+ **kwargs: Additional keyword arguments.
1378+
1379+ Examples::
1380+
1381+ # tensorflow QDQ int8 model 'q_model' export to ONNX int8 model
1382+ from neural_compressor.config import TF2ONNXConfig
1383+ config = TF2ONNXConfig()
1384+ q_model.export(output_graph, config)
1385+ """
13341386 def __init__ (
13351387 self ,
13361388 dtype = "int8" ,
0 commit comments