From fce7e38450480bc253e76e379e1b4bf7788c014f Mon Sep 17 00:00:00 2001 From: Ryan <23580140+brianhou0208@users.noreply.github.com> Date: Wed, 25 Jun 2025 03:13:41 +0800 Subject: [PATCH] Update README.md --- README.md | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/README.md b/README.md index 5592acc0fe..dc5f491d69 100644 --- a/README.md +++ b/README.md @@ -408,6 +408,8 @@ All model architecture families include variants with pretrained weights. There * Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723 * BEiT - https://arxiv.org/abs/2106.08254 +* BEiT-V2 - https://arxiv.org/abs/2208.06366 +* BEiT3 - https://arxiv.org/abs/2208.10442 * Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370 * Bottleneck Transformers - https://arxiv.org/abs/2101.11605 * CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239 @@ -424,6 +426,7 @@ All model architecture families include variants with pretrained weights. There * DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629 * EdgeNeXt - https://arxiv.org/abs/2206.10589 * EfficientFormer - https://arxiv.org/abs/2206.01191 +* EfficientFormer-V2 - https://arxiv.org/abs/2212.08059 * EfficientNet (MBConvNet Family) * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 @@ -440,12 +443,14 @@ All model architecture families include variants with pretrained weights. There * EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027 * EVA - https://arxiv.org/abs/2211.07636 * EVA-02 - https://arxiv.org/abs/2303.11331 +* FasterNet - https://arxiv.org/abs/2303.03667 * FastViT - https://arxiv.org/abs/2303.14189 * FlexiViT - https://arxiv.org/abs/2212.08013 * FocalNet (Focal Modulation Networks) - https://arxiv.org/abs/2203.11926 * GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959 * GhostNet - https://arxiv.org/abs/1911.11907 * GhostNet-V2 - https://arxiv.org/abs/2211.12905 +* GhostNet-V3 - https://arxiv.org/abs/2404.11202 * gMLP - https://arxiv.org/abs/2105.08050 * GPU-Efficient Networks - https://arxiv.org/abs/2006.14090 * Halo Nets - https://arxiv.org/abs/2103.12731 @@ -501,14 +506,19 @@ All model architecture families include variants with pretrained weights. There * SelecSLS - https://arxiv.org/abs/1907.00837 * Selective Kernel Networks - https://arxiv.org/abs/1903.06586 * Sequencer2D - https://arxiv.org/abs/2205.01972 +* SHViT - https://arxiv.org/abs/2401.16456 * SigLIP (image encoder) - https://arxiv.org/abs/2303.15343 * SigLIP 2 (image encoder) - https://arxiv.org/abs/2502.14786 +* StarNet - https://arxiv.org/abs/2403.19967 +* SwiftFormer - https://arxiv.org/pdf/2303.15446 * Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725 * Swin Transformer - https://arxiv.org/abs/2103.14030 * Swin Transformer V2 - https://arxiv.org/abs/2111.09883 +* TinyViT - https://arxiv.org/abs/2207.10666 * Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112 * TResNet - https://arxiv.org/abs/2003.13630 * Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf +* VGG - https://arxiv.org/abs/1409.1556 * Visformer - https://arxiv.org/abs/2104.12533 * Vision Transformer - https://arxiv.org/abs/2010.11929 * ViTamin - https://arxiv.org/abs/2404.02132