Skip to content

Commit 8894a6b

Browse files
committed
Update sotabench.py with latest seresnext26 and efficientnet_b3 models
1 parent acc3ed2 commit 8894a6b

File tree

1 file changed

+12
-1
lines changed

1 file changed

+12
-1
lines changed

sotabench.py

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,14 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
4646
ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//4),
4747
_entry('efficientnet_b0', 'EfficientNet-B0', '1905.11946'),
4848
_entry('efficientnet_b1', 'EfficientNet-B1', '1905.11946'),
49-
_entry('efficientnet_b2', 'EfficientNet-B2', '1905.11946'),
49+
_entry('efficientnet_b2', 'EfficientNet-B2', '1905.11946',
50+
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
51+
_entry('efficientnet_b2a', 'EfficientNet-B2 (288x288, 1.0 crop)', '1905.11946',
52+
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
53+
_entry('efficientnet_b3', 'EfficientNet-B3', '1905.11946',
54+
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
55+
_entry('efficientnet_b3a', 'EfficientNet-B3 (320x320, 1.0 crop)', '1905.11946',
56+
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
5057
_entry('fbnetc_100', 'FBNet-C', '1812.03443',
5158
model_desc='Trained in PyTorch with RMSProp, exponential LR decay'),
5259
_entry('gluon_inception_v3', 'Inception V3', '1512.00567', model_desc='Ported from GluonCV Model Zoo'),
@@ -95,7 +102,11 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
95102
_entry('seresnet18', 'SE-ResNet-18', '1709.01507'),
96103
_entry('seresnet34', 'SE-ResNet-34', '1709.01507'),
97104
_entry('seresnext26_32x4d', 'SE-ResNeXt-26 32x4d', '1709.01507',
105+
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck'),
106+
_entry('seresnext26d_32x4d', 'SE-ResNeXt-26-D 32x4d', '',
98107
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep stem, and avg-pool in downsample layers.'),
108+
_entry('seresnext26t_32x4d', 'SE-ResNeXt-26-T 32x4d', '',
109+
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered stem, and avg-pool in downsample layers.'),
99110
_entry('spnasnet_100', 'Single-Path NAS', '1904.02877',
100111
model_desc='Trained in PyTorch with SGD, cosine LR decay'),
101112
_entry('tf_efficientnet_b0', 'EfficientNet-B0 (AutoAugment)', '1905.11946',

0 commit comments

Comments
 (0)