Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 18 additions & 3 deletions examples/dreambooth/train_dreambooth_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
FlaxStableDiffusionPipeline,
FlaxUNet2DConditionModel,
)
from diffusers.experimental.lora.linear_with_lora_flax import FlaxLora
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from diffusers.utils import check_min_version
from flax import jax_utils
Expand Down Expand Up @@ -114,6 +115,7 @@ def parse_args():
" class_data_dir, additional images will be sampled with class_prompt."
),
)
parser.add_argument("--lora", action="store_true", help="Use LoRA (https://arxiv.org/abs/2106.09685)")
parser.add_argument(
"--output_dir",
type=str,
Expand Down Expand Up @@ -474,9 +476,6 @@ def collate_fn(examples):
dtype=weight_dtype,
**vae_kwargs,
)
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", dtype=weight_dtype, revision=args.revision
)

# Optimization
if args.scale_lr:
Expand All @@ -497,6 +496,22 @@ def collate_fn(examples):
adamw,
)

if args.lora:
unet, unet_params = FlaxLora(FlaxUNet2DConditionModel).from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
dtype=weight_dtype,
revision=args.revision,
)
optimizer = optax.masked(optimizer, mask=unet.get_mask)
else:
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
dtype=weight_dtype,
revision=args.revision,
)

unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)
text_encoder_state = train_state.TrainState.create(
apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer
Expand Down
171 changes: 171 additions & 0 deletions src/diffusers/experimental/lora/linear_with_lora_flax.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
import copy
import dataclasses
from collections import defaultdict
from typing import Dict, List, Type, Union, cast

import flax.linen as nn
import jax
import jax.numpy as jnp
from diffusers.models.modeling_flax_utils import FlaxModelMixin
from flax.core.frozen_dict import FrozenDict
from flax.linen.initializers import zeros
from flax.traverse_util import flatten_dict, unflatten_dict


def replace_module(parent, old_child, new_child):
for k, v in parent.__dict__.items():
if isinstance(v, nn.Module) and v.name == old_child.name:
object.__setattr__(parent, k, new_child)
elif isinstance(v, tuple):
for i, c in enumerate(v):
if isinstance(c, nn.Module) and c.name == old_child.name:
object.__setattr__(parent, k, v[:i] + (new_child,) + v[i + 1 :])

parent._state.children[old_child.name] = new_child
object.__setattr__(new_child, "parent", old_child.parent)
object.__setattr__(new_child, "scope", old_child.scope)


class LoRA:
pass


class FlaxLinearWithLora(nn.Module, LoRA):
features: int
in_features: int = -1
rank: int = 5
scale: float = 1.0
use_bias: bool = True

@nn.compact
def __call__(self, inputs):
linear = nn.Dense(features=self.features, use_bias=self.use_bias, name="linear")
lora_down = nn.Dense(features=self.rank, use_bias=False, name="lora_down")
lora_up = nn.Dense(features=self.features, use_bias=False, kernel_init=zeros, name="lora_up")

return linear(inputs) + lora_up(lora_down(inputs)) * self.scale


class FlaxLoraUtils(nn.Module):
@staticmethod
def _get_children(model: nn.Module) -> Dict[str, nn.Module]:
model._try_setup(shallow=True)
return {k: v for k, v in model._state.children.items() if isinstance(v, nn.Module)}

@staticmethod
def _wrap_dense(params: dict, parent: nn.Module, model: Union[nn.Dense, nn.Module], name: str):
if not isinstance(model, nn.Dense):
return params, {}

lora = FlaxLinearWithLora(
in_features=jnp.shape(params["kernel"])[0],
features=model.features,
use_bias=model.use_bias,
name=name,
parent=None,
)

lora_params = {
"linear": params,
"lora_down": {
"kernel": jax.random.normal(jax.random.PRNGKey(0), (lora.in_features, lora.rank)) * 1.0 / lora.rank
},
"lora_up": {"kernel": jnp.zeros((lora.rank, lora.features))},
}

params_to_optimize = defaultdict(dict)
for n in ["lora_up", "lora_down"]:
params_to_optimize[n] = {k: True for k in lora_params[n].keys()}
params_to_optimize["linear"] = {k: False for k in lora_params["linear"].keys()}

return lora_params, dict(params_to_optimize)

@staticmethod
def wrap(
params: Union[dict, FrozenDict],
model: nn.Module,
targets: List[str],
is_target: bool = False,
):

model = model.bind({"params": params})
if hasattr(model, "init_weights"):
model.init_weights(jax.random.PRNGKey(0))

params = params.unfreeze() if isinstance(params, FrozenDict) else copy.copy(params)
params_to_optimize = {}

for name, child in FlaxLoraUtils._get_children(model).items():
if is_target:
results = FlaxLoraUtils._wrap_dense(params.get(name, {}), model, child, name)
elif child.__class__.__name__ in targets:
results = FlaxLoraUtils.wrap(params.get(name, {}), child, targets=targets, is_target=True)
else:
results = FlaxLoraUtils.wrap(params.get(name, {}), child, targets=targets)

params[name], params_to_optimize[name] = results

return params, params_to_optimize


def wrap_in_lora(model: Type[nn.Module], targets: List[str]):
class _FlaxLora(model, LoRA):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

def wrap(self):
for attr in self._state.children.values():
if not isinstance(attr, nn.Module):
continue
if isinstance(attr, LoRA):
continue

if self.__class__.__name__ in targets and isinstance(attr, nn.Dense):
instance = FlaxLinearWithLora(
features=attr.features,
use_bias=attr.use_bias,
name=attr.name,
parent=None,
)
else:
subattrs = {f.name: getattr(attr, f.name) for f in dataclasses.fields(attr) if f.init}
subattrs["parent"] = None
klass = wrap_in_lora(attr.__class__, targets=targets)
instance = klass(**subattrs)

replace_module(self, attr, instance)

def setup(self):
super().setup()
self.wrap()

_FlaxLora.__name__ = f"{model.__name__}Lora"
_FlaxLora.__annotations__ = model.__annotations__
return _FlaxLora


def FlaxLora(model: Type[nn.Module], targets=["FlaxAttentionBlock", "FlaxGEGLU"]):
targets = targets + [f"{t}Lora" for t in targets]

class _LoraFlax(wrap_in_lora(model, targets=targets)):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

@classmethod
def from_pretrained(cls, *args, **kwargs):
instance, params = cast(Type[FlaxModelMixin], model).from_pretrained(*args, **kwargs)
params, mask = FlaxLoraUtils.wrap(params, instance, targets=targets)
subattrs = {f.name: getattr(instance, f.name) for f in dataclasses.fields(instance) if f.init}
instance = cls(**subattrs)
mask_values = flatten_dict(mask)
object.__setattr__(
instance,
"get_mask",
lambda params: unflatten_dict(
{k: mask_values.get(k, False) for k in flatten_dict(params, keep_empty_nodes=True).keys()}
),
)
return instance, params

_LoraFlax.__name__ = f"{model.__name__}WithLora"
return _LoraFlax
34 changes: 34 additions & 0 deletions src/diffusers/experimental/lora/test_lora.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
import os
import pdb

import jax
import optax
from diffusers import FlaxUNet2DConditionModel
from diffusers.experimental.lora.linear_with_lora_flax import FlaxLinearWithLora, FlaxLora
from flax.training import train_state
from jax.config import config
from jax.experimental.compilation_cache import compilation_cache as cc


config.update("jax_traceback_filtering", "off")
config.update("jax_experimental_subjaxpr_lowering_cache", True)
cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache"))

if __name__ == "__main__":
unet, unet_params = FlaxLora(FlaxUNet2DConditionModel).from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="unet",
revision="flax",
)
get_mask = unet.get_mask

assert "lora_up" in unet_params["up_blocks_1"]["attentions_1"]["transformer_blocks_0"]["attn1"]["to_q"].keys()

optimizer = optax.masked(optax.adamw(1e-6), mask=get_mask)
unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)

bound = unet.bind({"params": unet_params})
bound.init_weights(jax.random.PRNGKey(0))

assert isinstance(bound.up_blocks[1].attentions[1].transformer_blocks[0].attn1.query, FlaxLinearWithLora)
pdb.set_trace()