@@ -62,7 +62,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
6262 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
6363 function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
6464 [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
65- [`~ConfigMixin.from_config`] functios .
65+ [`~ConfigMixin.from_config`] functions .
6666
6767 For more details, see the original paper: https://arxiv.org/abs/2010.02502
6868
@@ -73,8 +73,8 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
7373 beta_schedule (`str`):
7474 the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
7575 `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
76- trained_betas (`np.ndarray`, optional): TODO
77- timestep_values (`np.ndarray `, optional): TODO
76+ trained_betas (`np.ndarray`, optional):
77+ option to pass an array of betas directly to the constructor to bypass `beta_start `, `beta_end` etc.
7878 clip_sample (`bool`, default `True`):
7979 option to clip predicted sample between -1 and 1 for numerical stability.
8080 set_alpha_to_one (`bool`, default `True`):
@@ -91,7 +91,6 @@ def __init__(
9191 beta_end : float = 0.02 ,
9292 beta_schedule : str = "linear" ,
9393 trained_betas : Optional [np .ndarray ] = None ,
94- timestep_values : Optional [np .ndarray ] = None ,
9594 clip_sample : bool = True ,
9695 set_alpha_to_one : bool = True ,
9796 tensor_format : str = "pt" ,
@@ -142,7 +141,8 @@ def set_timesteps(self, num_inference_steps: int, offset: int = 0):
142141 Args:
143142 num_inference_steps (`int`):
144143 the number of diffusion steps used when generating samples with a pre-trained model.
145- offset (`int`): TODO
144+ offset (`int`):
145+ optional value to shift timestep values up by. A value of 1 is used in stable diffusion for inference.
146146 """
147147 self .num_inference_steps = num_inference_steps
148148 self .timesteps = np .arange (
0 commit comments