|
| 1 | +import unittest |
| 2 | +from dataclasses import dataclass |
| 3 | +from typing import List, Union |
| 4 | + |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +import PIL.Image |
| 8 | +from diffusers.utils.outputs import BaseOutput |
| 9 | + |
| 10 | + |
| 11 | +@dataclass |
| 12 | +class CustomOutput(BaseOutput): |
| 13 | + images: Union[List[PIL.Image.Image], np.ndarray] |
| 14 | + |
| 15 | + |
| 16 | +class ConfigTester(unittest.TestCase): |
| 17 | + def test_outputs_single_attribute(self): |
| 18 | + outputs = CustomOutput(images=np.random.rand(1, 3, 4, 4)) |
| 19 | + |
| 20 | + # check every way of getting the attribute |
| 21 | + assert isinstance(outputs.images, np.ndarray) |
| 22 | + assert outputs.images.shape == (1, 3, 4, 4) |
| 23 | + assert isinstance(outputs["images"], np.ndarray) |
| 24 | + assert outputs["images"].shape == (1, 3, 4, 4) |
| 25 | + assert isinstance(outputs[0], np.ndarray) |
| 26 | + assert outputs[0].shape == (1, 3, 4, 4) |
| 27 | + |
| 28 | + # test with a non-tensor attribute |
| 29 | + outputs = CustomOutput(images=[PIL.Image.new("RGB", (4, 4))]) |
| 30 | + |
| 31 | + # check every way of getting the attribute |
| 32 | + assert isinstance(outputs.images, list) |
| 33 | + assert isinstance(outputs.images[0], PIL.Image.Image) |
| 34 | + assert isinstance(outputs["images"], list) |
| 35 | + assert isinstance(outputs["images"][0], PIL.Image.Image) |
| 36 | + assert isinstance(outputs[0], list) |
| 37 | + assert isinstance(outputs[0][0], PIL.Image.Image) |
| 38 | + |
| 39 | + def test_outputs_dict_init(self): |
| 40 | + # test output reinitialization with a `dict` for compatibility with `accelerate` |
| 41 | + outputs = CustomOutput({"images": np.random.rand(1, 3, 4, 4)}) |
| 42 | + |
| 43 | + # check every way of getting the attribute |
| 44 | + assert isinstance(outputs.images, np.ndarray) |
| 45 | + assert outputs.images.shape == (1, 3, 4, 4) |
| 46 | + assert isinstance(outputs["images"], np.ndarray) |
| 47 | + assert outputs["images"].shape == (1, 3, 4, 4) |
| 48 | + assert isinstance(outputs[0], np.ndarray) |
| 49 | + assert outputs[0].shape == (1, 3, 4, 4) |
| 50 | + |
| 51 | + # test with a non-tensor attribute |
| 52 | + outputs = CustomOutput({"images": [PIL.Image.new("RGB", (4, 4))]}) |
| 53 | + |
| 54 | + # check every way of getting the attribute |
| 55 | + assert isinstance(outputs.images, list) |
| 56 | + assert isinstance(outputs.images[0], PIL.Image.Image) |
| 57 | + assert isinstance(outputs["images"], list) |
| 58 | + assert isinstance(outputs["images"][0], PIL.Image.Image) |
| 59 | + assert isinstance(outputs[0], list) |
| 60 | + assert isinstance(outputs[0][0], PIL.Image.Image) |
0 commit comments