Skip to content

Commit 65ea7d6

Browse files
authored
Add safety module (#213)
* add SafetyChecker * better name, fix checker * add checker in main init * remove from main init * update logic to detect pipeline module * style * handle all safety logic in safety checker * draw text * can't draw * small fixes * treat special care as nsfw * remove commented lines * update safety checker
1 parent e30e1b8 commit 65ea7d6

File tree

4 files changed

+101
-6
lines changed

4 files changed

+101
-6
lines changed

src/diffusers/pipeline_utils.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -42,6 +42,7 @@
4242
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
4343
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
4444
"PreTrainedModel": ["save_pretrained", "from_pretrained"],
45+
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
4546
},
4647
}
4748

@@ -63,9 +64,9 @@ def register_modules(self, **kwargs):
6364
library = module.__module__.split(".")[0]
6465

6566
# check if the module is a pipeline module
66-
pipeline_file = module.__module__.split(".")[-1]
6767
pipeline_dir = module.__module__.split(".")[-2]
68-
is_pipeline_module = pipeline_file == "pipeline_" + pipeline_dir and hasattr(pipelines, pipeline_dir)
68+
path = module.__module__.split(".")
69+
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
6970

7071
# if library is not in LOADABLE_CLASSES, then it is a custom module.
7172
# Or if it's a pipeline module, then the module is inside the pipeline

src/diffusers/pipelines/stable_diffusion/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,4 +3,4 @@
33

44

55
if is_transformers_available():
6-
from .pipeline_stable_diffusion import StableDiffusionPipeline
6+
from .pipeline_stable_diffusion import StableDiffusionPipeline, StableDiffusionSafetyChecker

src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py

Lines changed: 20 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,11 +4,12 @@
44
import torch
55

66
from tqdm.auto import tqdm
7-
from transformers import CLIPTextModel, CLIPTokenizer
7+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
88

99
from ...models import AutoencoderKL, UNet2DConditionModel
1010
from ...pipeline_utils import DiffusionPipeline
1111
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
12+
from .safety_checker import StableDiffusionSafetyChecker
1213

1314

1415
class StableDiffusionPipeline(DiffusionPipeline):
@@ -19,10 +20,20 @@ def __init__(
1920
tokenizer: CLIPTokenizer,
2021
unet: UNet2DConditionModel,
2122
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
23+
safety_checker: StableDiffusionSafetyChecker,
24+
feature_extractor: CLIPFeatureExtractor,
2225
):
2326
super().__init__()
2427
scheduler = scheduler.set_format("pt")
25-
self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
28+
self.register_modules(
29+
vae=vae,
30+
text_encoder=text_encoder,
31+
tokenizer=tokenizer,
32+
unet=unet,
33+
scheduler=scheduler,
34+
safety_checker=safety_checker,
35+
feature_extractor=feature_extractor,
36+
)
2637

2738
@torch.no_grad()
2839
def __call__(
@@ -53,6 +64,7 @@ def __call__(
5364
self.unet.to(torch_device)
5465
self.vae.to(torch_device)
5566
self.text_encoder.to(torch_device)
67+
self.safety_checker.to(torch_device)
5668

5769
# get prompt text embeddings
5870
text_input = self.tokenizer(
@@ -136,7 +148,12 @@ def __call__(
136148

137149
image = (image / 2 + 0.5).clamp(0, 1)
138150
image = image.cpu().permute(0, 2, 3, 1).numpy()
151+
152+
# run safety checker
153+
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(torch_device)
154+
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
155+
139156
if output_type == "pil":
140157
image = self.numpy_to_pil(image)
141158

142-
return {"sample": image}
159+
return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
Lines changed: 77 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,77 @@
1+
import numpy as np
2+
import torch
3+
import torch.nn as nn
4+
5+
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
6+
7+
from ...utils import logging
8+
9+
10+
logger = logging.get_logger(__name__)
11+
12+
13+
def cosine_distance(image_embeds, text_embeds):
14+
normalized_image_embeds = nn.functional.normalize(image_embeds)
15+
normalized_text_embeds = nn.functional.normalize(text_embeds)
16+
return torch.mm(normalized_image_embeds, normalized_text_embeds.T)
17+
18+
19+
class StableDiffusionSafetyChecker(PreTrainedModel):
20+
config_class = CLIPConfig
21+
22+
def __init__(self, config: CLIPConfig):
23+
super().__init__(config)
24+
25+
self.vision_model = CLIPVisionModel(config.vision_config)
26+
self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False)
27+
28+
self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False)
29+
self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False)
30+
31+
self.register_buffer("concept_embeds_weights", torch.ones(17))
32+
self.register_buffer("special_care_embeds_weights", torch.ones(3))
33+
34+
@torch.no_grad()
35+
def forward(self, clip_input, images):
36+
pooled_output = self.vision_model(clip_input)[1] # pooled_output
37+
image_embeds = self.visual_projection(pooled_output)
38+
39+
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().numpy()
40+
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().numpy()
41+
42+
result = []
43+
batch_size = image_embeds.shape[0]
44+
for i in range(batch_size):
45+
result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
46+
adjustment = 0.05
47+
48+
for concet_idx in range(len(special_cos_dist[0])):
49+
concept_cos = special_cos_dist[i][concet_idx]
50+
concept_threshold = self.special_care_embeds_weights[concet_idx].item()
51+
result_img["special_scores"][concet_idx] = round(concept_cos - concept_threshold + adjustment, 3)
52+
if result_img["special_scores"][concet_idx] > 0:
53+
result_img["special_care"].append({concet_idx, result_img["special_scores"][concet_idx]})
54+
adjustment = 0.01
55+
56+
for concet_idx in range(len(cos_dist[0])):
57+
concept_cos = cos_dist[i][concet_idx]
58+
concept_threshold = self.concept_embeds_weights[concet_idx].item()
59+
result_img["concept_scores"][concet_idx] = round(concept_cos - concept_threshold + adjustment, 3)
60+
if result_img["concept_scores"][concet_idx] > 0:
61+
result_img["bad_concepts"].append(concet_idx)
62+
63+
result.append(result_img)
64+
65+
has_nsfw_concepts = [len(result[i]["bad_concepts"]) > 0 or i in range(len(result))]
66+
67+
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
68+
if has_nsfw_concept:
69+
images[idx] = np.zeros(images[idx].shape) # black image
70+
71+
if any(has_nsfw_concepts):
72+
logger.warning(
73+
"Potential NSFW content was detected in one or more images. A black image will be returned instead."
74+
" Try again with a different prompt and/or seed."
75+
)
76+
77+
return images, has_nsfw_concepts

0 commit comments

Comments
 (0)