|
| 1 | +import glob |
| 2 | +import os |
| 3 | +from dataclasses import dataclass |
| 4 | + |
| 5 | +import torch |
| 6 | +import torch.nn.functional as F |
| 7 | + |
| 8 | +from accelerate import Accelerator |
| 9 | +from datasets import load_dataset |
| 10 | +from diffusers import DDIMPipeline, DDIMScheduler, DDPMPipeline, DDPMScheduler, UNet2DModel |
| 11 | +from diffusers.hub_utils import init_git_repo, push_to_hub |
| 12 | +from diffusers.optimization import get_cosine_schedule_with_warmup |
| 13 | +from PIL import Image |
| 14 | +from torchvision import transforms |
| 15 | +from tqdm.auto import tqdm |
| 16 | + |
| 17 | + |
| 18 | +@dataclass |
| 19 | +class TrainingConfig: |
| 20 | + image_size = 128 # the generated image resolution |
| 21 | + train_batch_size = 16 |
| 22 | + eval_batch_size = 16 # how many images to sample during evaluation |
| 23 | + num_epochs = 50 |
| 24 | + gradient_accumulation_steps = 1 |
| 25 | + learning_rate = 5e-5 |
| 26 | + lr_warmup_steps = 500 |
| 27 | + save_image_epochs = 10 |
| 28 | + save_model_epochs = 30 |
| 29 | + mixed_precision = "fp16" # `no` for float32, `fp16` for automatic mixed precision |
| 30 | + output_dir = "ddim-butterflies-128-v-diffusion" # the model namy locally and on the HF Hub |
| 31 | + |
| 32 | + push_to_hub = False # whether to upload the saved model to the HF Hub |
| 33 | + hub_private_repo = False |
| 34 | + overwrite_output_dir = True # overwrite the old model when re-running the notebook |
| 35 | + seed = 0 |
| 36 | + |
| 37 | + |
| 38 | +config = TrainingConfig() |
| 39 | + |
| 40 | + |
| 41 | +config.dataset_name = "huggan/smithsonian_butterflies_subset" |
| 42 | +dataset = load_dataset(config.dataset_name, split="train") |
| 43 | + |
| 44 | + |
| 45 | +preprocess = transforms.Compose( |
| 46 | + [ |
| 47 | + transforms.Resize((config.image_size, config.image_size)), |
| 48 | + transforms.RandomHorizontalFlip(), |
| 49 | + transforms.ToTensor(), |
| 50 | + transforms.Normalize([0.5], [0.5]), |
| 51 | + ] |
| 52 | +) |
| 53 | + |
| 54 | + |
| 55 | +def transform(examples): |
| 56 | + images = [preprocess(image.convert("RGB")) for image in examples["image"]] |
| 57 | + return {"images": images} |
| 58 | + |
| 59 | + |
| 60 | +dataset.set_transform(transform) |
| 61 | + |
| 62 | + |
| 63 | +train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True) |
| 64 | + |
| 65 | + |
| 66 | +model = UNet2DModel( |
| 67 | + sample_size=config.image_size, # the target image resolution |
| 68 | + in_channels=3, # the number of input channels, 3 for RGB images |
| 69 | + out_channels=3, # the number of output channels |
| 70 | + layers_per_block=2, # how many ResNet layers to use per UNet block |
| 71 | + block_out_channels=(128, 128, 256, 256, 512, 512), # the number of output channes for each UNet block |
| 72 | + down_block_types=( |
| 73 | + "DownBlock2D", # a regular ResNet downsampling block |
| 74 | + "DownBlock2D", |
| 75 | + "DownBlock2D", |
| 76 | + "DownBlock2D", |
| 77 | + "AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention |
| 78 | + "DownBlock2D", |
| 79 | + ), |
| 80 | + up_block_types=( |
| 81 | + "UpBlock2D", # a regular ResNet upsampling block |
| 82 | + "AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention |
| 83 | + "UpBlock2D", |
| 84 | + "UpBlock2D", |
| 85 | + "UpBlock2D", |
| 86 | + "UpBlock2D", |
| 87 | + ), |
| 88 | +) |
| 89 | + |
| 90 | + |
| 91 | +if config.output_dir.startswith("ddpm"): |
| 92 | + noise_scheduler = DDPMScheduler( |
| 93 | + num_train_timesteps=1000, |
| 94 | + beta_schedule="squaredcos_cap_v2", |
| 95 | + variance_type="v_diffusion", |
| 96 | + prediction_type="v", |
| 97 | + ) |
| 98 | +else: |
| 99 | + noise_scheduler = DDIMScheduler( |
| 100 | + num_train_timesteps=1000, |
| 101 | + beta_schedule="squaredcos_cap_v2", |
| 102 | + variance_type="v_diffusion", |
| 103 | + prediction_type="v", |
| 104 | + ) |
| 105 | + |
| 106 | + |
| 107 | +optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate) |
| 108 | + |
| 109 | + |
| 110 | +lr_scheduler = get_cosine_schedule_with_warmup( |
| 111 | + optimizer=optimizer, |
| 112 | + num_warmup_steps=config.lr_warmup_steps, |
| 113 | + num_training_steps=(len(train_dataloader) * config.num_epochs), |
| 114 | +) |
| 115 | + |
| 116 | + |
| 117 | +def make_grid(images, rows, cols): |
| 118 | + w, h = images[0].size |
| 119 | + grid = Image.new("RGB", size=(cols * w, rows * h)) |
| 120 | + for i, image in enumerate(images): |
| 121 | + grid.paste(image, box=(i % cols * w, i // cols * h)) |
| 122 | + return grid |
| 123 | + |
| 124 | + |
| 125 | +def evaluate(config, epoch, pipeline): |
| 126 | + # Sample some images from random noise (this is the backward diffusion process). |
| 127 | + # The default pipeline output type is `List[PIL.Image]` |
| 128 | + images = pipeline( |
| 129 | + batch_size=config.eval_batch_size, |
| 130 | + generator=torch.manual_seed(config.seed), |
| 131 | + ).images |
| 132 | + |
| 133 | + # Make a grid out of the images |
| 134 | + image_grid = make_grid(images, rows=4, cols=4) |
| 135 | + |
| 136 | + # Save the images |
| 137 | + test_dir = os.path.join(config.output_dir, "samples") |
| 138 | + os.makedirs(test_dir, exist_ok=True) |
| 139 | + image_grid.save(f"{test_dir}/{epoch:04d}.png") |
| 140 | + |
| 141 | + |
| 142 | +def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler): |
| 143 | + # Initialize accelerator and tensorboard logging |
| 144 | + accelerator = Accelerator( |
| 145 | + mixed_precision=config.mixed_precision, |
| 146 | + gradient_accumulation_steps=config.gradient_accumulation_steps, |
| 147 | + log_with="tensorboard", |
| 148 | + logging_dir=os.path.join(config.output_dir, "logs"), |
| 149 | + ) |
| 150 | + if accelerator.is_main_process: |
| 151 | + if config.push_to_hub: |
| 152 | + repo = init_git_repo(config, at_init=True) |
| 153 | + accelerator.init_trackers("train_example") |
| 154 | + |
| 155 | + # Prepare everything |
| 156 | + # There is no specific order to remember, you just need to unpack the |
| 157 | + # objects in the same order you gave them to the prepare method. |
| 158 | + model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
| 159 | + model, optimizer, train_dataloader, lr_scheduler |
| 160 | + ) |
| 161 | + |
| 162 | + global_step = 0 |
| 163 | + |
| 164 | + if config.output_dir.startswith("ddpm"): |
| 165 | + pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler) |
| 166 | + else: |
| 167 | + pipeline = DDIMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler) |
| 168 | + |
| 169 | + evaluate(config, 0, pipeline) |
| 170 | + |
| 171 | + # Now you train the model |
| 172 | + for epoch in range(config.num_epochs): |
| 173 | + progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process) |
| 174 | + progress_bar.set_description(f"Epoch {epoch}") |
| 175 | + |
| 176 | + for step, batch in enumerate(train_dataloader): |
| 177 | + clean_images = batch["images"] |
| 178 | + # Sample noise to add to the images |
| 179 | + noise = torch.randn(clean_images.shape).to(clean_images.device) |
| 180 | + bs = clean_images.shape[0] |
| 181 | + |
| 182 | + # Sample a random timestep for each image |
| 183 | + timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,), device=clean_images.device).long() |
| 184 | + |
| 185 | + with accelerator.accumulate(model): |
| 186 | + # Predict the noise residual |
| 187 | + alpha_t, sigma_t = noise_scheduler.get_alpha_sigma(clean_images, timesteps, accelerator.device) |
| 188 | + z_t = alpha_t * clean_images + sigma_t * noise |
| 189 | + noise_pred = model(z_t, timesteps).sample |
| 190 | + v = alpha_t * noise - sigma_t * clean_images |
| 191 | + loss = F.mse_loss(noise_pred, v) |
| 192 | + accelerator.backward(loss) |
| 193 | + |
| 194 | + accelerator.clip_grad_norm_(model.parameters(), 1.0) |
| 195 | + optimizer.step() |
| 196 | + lr_scheduler.step() |
| 197 | + optimizer.zero_grad() |
| 198 | + |
| 199 | + progress_bar.update(1) |
| 200 | + logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} |
| 201 | + progress_bar.set_postfix(**logs) |
| 202 | + accelerator.log(logs, step=global_step) |
| 203 | + global_step += 1 |
| 204 | + |
| 205 | + # After each epoch you optionally sample some demo images with evaluate() and save the model |
| 206 | + if accelerator.is_main_process: |
| 207 | + if config.output_dir.startswith("ddpm"): |
| 208 | + pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler) |
| 209 | + else: |
| 210 | + pipeline = DDIMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler) |
| 211 | + |
| 212 | + if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1: |
| 213 | + evaluate(config, epoch, pipeline) |
| 214 | + |
| 215 | + if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1: |
| 216 | + if config.push_to_hub: |
| 217 | + push_to_hub(config, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=True) |
| 218 | + else: |
| 219 | + pipeline.save_pretrained(config.output_dir) |
| 220 | + |
| 221 | + |
| 222 | +args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler) |
| 223 | + |
| 224 | +train_loop(*args) |
| 225 | + |
| 226 | +sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png")) |
| 227 | +Image.open(sample_images[-1]) |
0 commit comments