Skip to content

Commit b2904a8

Browse files
authored
implemented quantized-gemma3 (#2902)
* implemented quantized-gemma, inference not working * Fixed a few modeling bugs: outputing the correct tokens for a few iterations then garbage * lint * clippy * quantized-gemma3 example working * added readme * clippy
1 parent 21055b5 commit b2904a8

File tree

4 files changed

+781
-0
lines changed

4 files changed

+781
-0
lines changed
Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
# candle-quantized-gemma
2+
3+
Candle implementation of quantized Gemma.
4+
5+
## Running an example
6+
7+
```bash
8+
$ cargo run --example quantized-gemma -- --prompt "Write a function to calculate fibonacci numbers. "
9+
10+
> ```python
11+
> def fibonacci(n):
12+
> """Calculates the nth Fibonacci number using recursion."""
13+
> if n <= 1:
14+
> return n
15+
> else:
16+
> return fibonacci(n-1) + fibonacci(n-2
17+
> ```
18+
```
Lines changed: 344 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,344 @@
1+
#[cfg(feature = "mkl")]
2+
extern crate intel_mkl_src;
3+
4+
#[cfg(feature = "accelerate")]
5+
extern crate accelerate_src;
6+
7+
use clap::{Parser, ValueEnum};
8+
use std::io::Write;
9+
use tokenizers::Tokenizer;
10+
11+
use candle::quantized::gguf_file;
12+
use candle::Tensor;
13+
use candle_transformers::generation::{LogitsProcessor, Sampling};
14+
15+
use candle_examples::token_output_stream::TokenOutputStream;
16+
use candle_transformers::models::quantized_gemma3::ModelWeights;
17+
18+
const DEFAULT_PROMPT: &str = "Write a function to calculate fibonacci num";
19+
20+
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
21+
enum Which {
22+
#[value(name = "gemma3-4b-it")]
23+
Gemma3_4bIt,
24+
}
25+
26+
#[derive(Parser, Debug)]
27+
#[command(author, version, about, long_about = None)]
28+
struct Args {
29+
/// GGUF file to load, typically a .gguf file generated by quantization
30+
#[arg(long)]
31+
model: Option<String>,
32+
33+
/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
34+
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
35+
/// is preserved.
36+
#[arg(long)]
37+
prompt: Option<String>,
38+
39+
/// The length of the sample to generate (in tokens).
40+
#[arg(short = 'n', long, default_value_t = 1000)]
41+
sample_len: usize,
42+
43+
/// The tokenizer config in json format.
44+
#[arg(long)]
45+
tokenizer: Option<String>,
46+
47+
/// The temperature used to generate samples, use 0 for greedy sampling.
48+
#[arg(long, default_value_t = 0.8)]
49+
temperature: f64,
50+
51+
/// Nucleus sampling probability cutoff.
52+
#[arg(long)]
53+
top_p: Option<f64>,
54+
55+
/// Only sample among the top K samples.
56+
#[arg(long)]
57+
top_k: Option<usize>,
58+
59+
/// The seed to use when generating random samples.
60+
#[arg(long, default_value_t = 299792458)]
61+
seed: u64,
62+
63+
/// Enable tracing (generates a trace-timestamp.json file).
64+
#[arg(long)]
65+
tracing: bool,
66+
67+
/// Process prompt elements separately.
68+
#[arg(long)]
69+
split_prompt: bool,
70+
71+
/// Run on CPU rather than GPU even if a GPU is available.
72+
#[arg(long)]
73+
cpu: bool,
74+
75+
/// Penalty to be applied for repeating tokens, 1. means no penalty.
76+
#[arg(long, default_value_t = 1.1)]
77+
repeat_penalty: f32,
78+
79+
/// The context size to consider for the repeat penalty.
80+
#[arg(long, default_value_t = 64)]
81+
repeat_last_n: usize,
82+
83+
/// The model size to use.
84+
#[arg(long, default_value = "gemma3-4b-it")]
85+
which: Which,
86+
}
87+
88+
impl Args {
89+
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
90+
let tokenizer_path = match &self.tokenizer {
91+
Some(config) => std::path::PathBuf::from(config),
92+
None => {
93+
let api = hf_hub::api::sync::Api::new()?;
94+
let repo = "google/gemma-3-4b-it";
95+
println!("DEBUG: Downloading tokenizer from {}", repo);
96+
let api = api.model(repo.to_string());
97+
api.get("tokenizer.json")?
98+
}
99+
};
100+
println!("DEBUG: Loading tokenizer from {:?}", tokenizer_path);
101+
let tokenizer = Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)?;
102+
103+
Ok(tokenizer)
104+
}
105+
106+
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
107+
let model_path = match &self.model {
108+
Some(config) => std::path::PathBuf::from(config),
109+
None => {
110+
let (repo, filename) = match self.which {
111+
Which::Gemma3_4bIt => (
112+
"google/gemma-3-4b-it-qat-q4_0-gguf",
113+
"gemma-3-4b-it-q4_0.gguf",
114+
),
115+
};
116+
let api = hf_hub::api::sync::Api::new()?;
117+
api.repo(hf_hub::Repo::with_revision(
118+
repo.to_string(),
119+
hf_hub::RepoType::Model,
120+
"main".to_string(),
121+
))
122+
.get(filename)?
123+
}
124+
};
125+
Ok(model_path)
126+
}
127+
}
128+
129+
fn format_size(size_in_bytes: usize) -> String {
130+
if size_in_bytes < 1_000 {
131+
format!("{}B", size_in_bytes)
132+
} else if size_in_bytes < 1_000_000 {
133+
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
134+
} else if size_in_bytes < 1_000_000_000 {
135+
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
136+
} else {
137+
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
138+
}
139+
}
140+
141+
#[derive(Debug)]
142+
enum Prompt {
143+
Interactive,
144+
Chat,
145+
One(String),
146+
}
147+
148+
fn main() -> anyhow::Result<()> {
149+
use tracing_chrome::ChromeLayerBuilder;
150+
use tracing_subscriber::prelude::*;
151+
152+
let args = Args::parse();
153+
let _guard = if args.tracing {
154+
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
155+
tracing_subscriber::registry().with(chrome_layer).init();
156+
Some(guard)
157+
} else {
158+
None
159+
};
160+
161+
println!(
162+
"avx: {}, neon: {}, simd128: {}, f16c: {}",
163+
candle::utils::with_avx(),
164+
candle::utils::with_neon(),
165+
candle::utils::with_simd128(),
166+
candle::utils::with_f16c()
167+
);
168+
println!(
169+
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
170+
args.temperature, args.repeat_penalty, args.repeat_last_n
171+
);
172+
173+
let model_path = args.model()?;
174+
let mut file = std::fs::File::open(&model_path)?;
175+
let start = std::time::Instant::now();
176+
let device = candle_examples::device(args.cpu)?;
177+
178+
let mut model = {
179+
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(&model_path))?;
180+
let mut total_size_in_bytes = 0;
181+
for (_, tensor) in model.tensor_infos.iter() {
182+
let elem_count = tensor.shape.elem_count();
183+
total_size_in_bytes +=
184+
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
185+
}
186+
println!(
187+
"loaded {:?} tensors ({}) in {:.2}s",
188+
model.tensor_infos.len(),
189+
&format_size(total_size_in_bytes),
190+
start.elapsed().as_secs_f32(),
191+
);
192+
ModelWeights::from_gguf(model, &mut file, &device)?
193+
};
194+
println!("model built");
195+
196+
let tokenizer = args.tokenizer()?;
197+
198+
let mut tos = TokenOutputStream::new(tokenizer);
199+
println!(
200+
"DEBUG: Tokenizer vocabulary size: {}",
201+
tos.tokenizer().get_vocab(true).len()
202+
);
203+
204+
let prompt = match args.prompt.as_deref() {
205+
Some("chat") => Prompt::Chat,
206+
Some("interactive") => Prompt::Interactive,
207+
Some(s) => Prompt::One(s.to_string()),
208+
None => Prompt::One(DEFAULT_PROMPT.to_string()),
209+
};
210+
211+
let mut pre_prompt_tokens = vec![];
212+
for _ in 0.. {
213+
let prompt_str = match &prompt {
214+
Prompt::One(prompt) => prompt.clone(),
215+
Prompt::Interactive | Prompt::Chat => {
216+
print!("> ");
217+
std::io::stdout().flush()?;
218+
let mut prompt = String::new();
219+
std::io::stdin().read_line(&mut prompt)?;
220+
if prompt.ends_with('\n') {
221+
prompt.pop();
222+
if prompt.ends_with('\r') {
223+
prompt.pop();
224+
}
225+
}
226+
// Format for Gemma 3 chat/instruction format
227+
format!("<start_of_turn>user\n{prompt}\n<end_of_turn>\n<start_of_turn>model\n")
228+
}
229+
};
230+
print!("{}", &prompt_str);
231+
232+
let tokens = tos
233+
.tokenizer()
234+
.encode(prompt_str, true)
235+
.map_err(anyhow::Error::msg)?;
236+
let prompt_tokens = [&pre_prompt_tokens, tokens.get_ids()].concat();
237+
238+
let to_sample = args.sample_len.saturating_sub(1);
239+
let max_seq_len = 8192; // Gemma 3 context length
240+
let prompt_tokens = if prompt_tokens.len() + to_sample > max_seq_len - 10 {
241+
let to_remove = prompt_tokens.len() + to_sample + 10 - max_seq_len;
242+
prompt_tokens[prompt_tokens.len().saturating_sub(to_remove)..].to_vec()
243+
} else {
244+
prompt_tokens
245+
};
246+
let mut all_tokens = vec![];
247+
let mut logits_processor = {
248+
let temperature = args.temperature;
249+
let sampling = if temperature <= 0. {
250+
Sampling::ArgMax
251+
} else {
252+
match (args.top_k, args.top_p) {
253+
(None, None) => Sampling::All { temperature },
254+
(Some(k), None) => Sampling::TopK { k, temperature },
255+
(None, Some(p)) => Sampling::TopP { p, temperature },
256+
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
257+
}
258+
};
259+
LogitsProcessor::from_sampling(args.seed, sampling)
260+
};
261+
262+
let start_prompt_processing = std::time::Instant::now();
263+
let mut next_token = if !args.split_prompt {
264+
let input = Tensor::new(prompt_tokens.as_slice(), &device)?.unsqueeze(0)?;
265+
let logits = model.forward(&input, 0)?;
266+
let logits = logits.squeeze(0)?;
267+
logits_processor.sample(&logits)?
268+
} else {
269+
let mut next_token = 0;
270+
for (pos, token) in prompt_tokens.iter().enumerate() {
271+
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
272+
let logits = model.forward(&input, pos)?;
273+
let logits = logits.squeeze(0)?;
274+
next_token = logits_processor.sample(&logits)?
275+
}
276+
next_token
277+
};
278+
let prompt_dt = start_prompt_processing.elapsed();
279+
all_tokens.push(next_token);
280+
if let Some(t) = tos.next_token(next_token)? {
281+
print!("{t}");
282+
std::io::stdout().flush()?;
283+
}
284+
285+
// For Gemma 3, use the correct end of sequence token
286+
let eos_token = *tos
287+
.tokenizer()
288+
.get_vocab(true)
289+
.get("<end_of_turn>")
290+
.unwrap();
291+
292+
let start_post_prompt = std::time::Instant::now();
293+
let mut sampled = 0;
294+
for index in 0..to_sample {
295+
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
296+
let logits = model.forward(&input, prompt_tokens.len() + index)?;
297+
let logits = logits.squeeze(0)?;
298+
let logits = if args.repeat_penalty == 1. {
299+
logits
300+
} else {
301+
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
302+
candle_transformers::utils::apply_repeat_penalty(
303+
&logits,
304+
args.repeat_penalty,
305+
&all_tokens[start_at..],
306+
)?
307+
};
308+
next_token = logits_processor.sample(&logits)?;
309+
all_tokens.push(next_token);
310+
if let Some(t) = tos.next_token(next_token)? {
311+
print!("{t}");
312+
std::io::stdout().flush()?;
313+
}
314+
sampled += 1;
315+
if next_token == eos_token {
316+
break;
317+
};
318+
}
319+
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
320+
print!("{rest}");
321+
}
322+
std::io::stdout().flush()?;
323+
let dt = start_post_prompt.elapsed();
324+
println!(
325+
"\n\n{:4} prompt tokens processed: {:.2} token/s",
326+
prompt_tokens.len(),
327+
prompt_tokens.len() as f64 / prompt_dt.as_secs_f64(),
328+
);
329+
println!(
330+
"{sampled:4} tokens generated: {:.2} token/s",
331+
sampled as f64 / dt.as_secs_f64(),
332+
);
333+
334+
match prompt {
335+
Prompt::One(_) => break,
336+
Prompt::Interactive => {}
337+
Prompt::Chat => {
338+
pre_prompt_tokens = [prompt_tokens.as_slice(), all_tokens.as_slice()].concat()
339+
}
340+
}
341+
}
342+
343+
Ok(())
344+
}

candle-transformers/src/models/mod.rs

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -79,6 +79,7 @@ pub mod phi3;
7979
pub mod pixtral;
8080
pub mod quantized_blip;
8181
pub mod quantized_blip_text;
82+
pub mod quantized_gemma3;
8283
pub mod quantized_llama;
8384
pub mod quantized_llama2_c;
8485
pub mod quantized_metavoice;

0 commit comments

Comments
 (0)