diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/index.md b/education/HADDOCK3/HADDOCK3-protein-protein-basic/index.md new file mode 100644 index 000000000..0e32ce34a --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/index.md @@ -0,0 +1,1544 @@ +--- +layout: page +title: "Protein-Protein modelling tutorial using a local version of HADDOCK3" +excerpt: "A tutorial describing the use of HADDOCK3 to model a Protein-Protein complex" +tags: [HADDOCK, HADDOCK3, installation, preparation, proteins, docking, analysis, workflows] +image: + feature: pages/banner_education-thin.jpg +--- +This tutorial consists of the following sections: + +* table of contents +{:toc} + +
+
+ +## Introduction + +This tutorial demonstrates the use of the new modular HADDOCK3 version for predicting the structure of a protein-protein complex from NMR chemical shift perturbation (CSP) data. +Namely, we will dock two E. coli proteins involved in glucose transport: the glucose-specific enzyme IIA (E2A) and the histidine-containing phosphocarrier protein (HPr). +The structures in the free form have been determined using X-ray crystallography (E2A) (PDB ID [1F3G](https://www.ebi.ac.uk/pdbe/entry/pdb/1f3g){:target="_blank"}) +and NMR spectroscopy (HPr) (PDB ID [1HDN](https://www.ebi.ac.uk/pdbe/entry/pdb/1hdn){:target="_blank"}). +The structure of the native complex has also been determined with NMR (PDB ID [1GGR](https://www.ebi.ac.uk/pdbe/entry/pdb/1ggr){:target="_blank"}). +These NMR experiments have also provided us with an array of data on the interaction itself +(chemical shift perturbations, intermolecular NOEs, residual dipolar couplings, and simulated diffusion anisotropy data), which will be useful for the docking. +For this tutorial, we will only make use of inteface residues identified from NMR chemical shift perturbation data as described +in [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"}. + +Throughout the tutorial, colored text will be used to refer to questions or instructions, and/or PyMOL commands. + +This is a question prompt: try answering it! +This an instruction prompt: follow it! +This is a PyMOL prompt: write this in the PyMOL command line prompt! +This is a Linux prompt: insert the commands in the terminal! + +
+
+ +## Setup/Requirements + +In order to follow this tutorial you will need to work on a Linux or MacOSX +system. We will also make use of [**PyMOL**][link-pymol] (freely available for +most operating systems) in order to visualize the input and output data. We will +provide you links to download the various required software and data. + +Further we are providing pre-processed PDB files for docking and analysis (but the +preprocessing of those files will also be explained in this tutorial). The files have been processed +to facilitate their use in HADDOCK and for allowing comparison with the known reference +structure of the complex. For this _download and unzip the following_ +[zip archive](){:target="_blank"} +_and note the location of the extracted PDB files in your system_. In it you should find the following directories: + +* `haddock3`: Contains HADDOCK3 configuration and job files for the various scenarios in this tutorial +* `pdbs`: Contains the pre-processed PDB files +* `plots`: Contains pre-generated html plots for the various scenarios in this tutorial +* `restraints`: Contains the interface information and the correspond restraint files for HADDOCK +* `runs`: Contains pre-calculated (partial) run results for the various scenarios in this tutorial +* `scripts`: Contains a variety of scripts used in this tutorial + + +
+
+ +## HADDOCK general concepts + +HADDOCK (see [https://www.bonvinlab.org/haddock3-user-manual/](https://www.bonvinlab.org/haddock3-user-manual/){:target="_blank"}) +is a collection of python scripts derived from ARIA ([https://aria.pasteur.fr](https://aria.pasteur.fr){:target="_blank"}) +that harness the power of CNS (Crystallography and NMR System – [https://cns-online.org](https://cns-online.org){:target="_blank"}) +for structure calculation of molecular complexes. What distinguishes HADDOCK from other docking software is its ability, +inherited from CNS, to incorporate experimental data as restraints and use these to guide the docking process alongside +traditional energetics and shape complementarity. Moreover, the intimate coupling with CNS endows HADDOCK with the +ability to actually produce models of sufficient quality to be archived in the Protein Data Bank. + +A central aspect to HADDOCK is the definition of Ambiguous Interaction Restraints or AIRs (see [https://www.bonvinlab.org/haddock3-user-manual/intro_restraints.html](https://www.bonvinlab.org/haddock3-user-manual/intro_restraints.html#ambiguous-distance-restraints)). These allow the +translation of raw data such as NMR chemical shift perturbation or mutagenesis experiments into distance +restraints that are incorporated in the energy function used in the calculations. AIRs are defined through +a list of residues that fall under two categories: active and passive. Generally, active residues are those +of central importance for the interaction, such as residues whose knockouts abolish the interaction or those +where the chemical shift perturbation is higher. Throughout the simulation, these active residues are +restrained to be part of the interface, if possible, otherwise incurring in a scoring penalty. Passive residues +are those that contribute for the interaction, but are deemed of less importance. If such a residue does +not belong in the interface there is no scoring penalty. Hence, a careful selection of which residues are +active and which are passive is critical for the success of the docking. + + +
+
+ +## A brief introduction to HADDOCK3 + + +HADDOCK3 is the next generation integrative modelling software in the +long-lasting HADDOCK project. It represents a complete rethinking and rewriting +of the HADDOCK2.X series, implementing a new way to interact with HADDOCK and +offering new features to users who can now define custom workflows. + +In the previous HADDOCK2.x versions, users had access to a highly +parameterisable yet rigid simulation pipeline composed of three steps: +`rigid-body docking (it0)`, `semi-flexible refinement (it1)`, and `final refinement (itw)`. + +
+ +
+ +In HADDOCK3, users have the freedom to configure docking workflows into +functional pipelines by combining the different HADDOCK3 modules, thus +adapting the workflows to their projects. HADDOCK3 has therefore developed to +truthfully work like a puzzle of many pieces (simulation modules) that users can +combine freely. To this end, the “old” HADDOCK machinery has been modularized, +and several new modules added, including third-party software additions. As a +result, the modularization achieved in HADDOCK3 allows users to duplicate steps +within one workflow (e.g., to repeat twice the `it1` stage of the HADDOCK2.x +rigid workflow). + +Note that, for simplification purposes, at this time, not all functionalities of +HADDOCK2.x have been ported to HADDOCK3, which does not (yet) support NMR RDC, +PCS and diffusion anisotropy restraints, cryo-EM restraints and coarse-graining. +Any type of information that can be converted into ambiguous interaction +restraints can, however, be used in HADDOCK3, which also supports the +*ab initio* docking modes of HADDOCK. + +
+ +
+ +To keep HADDOCK3 modules organized, we catalogued them into several +categories. +The main module categories are "topology", "sampling", "refinement", +"scoring", and "analysis". There is no limit to how many modules can belong to a +category. Modules are added as developed, and new categories will be created +if/when needed. You can access the HADDOCK3 documentation page for the list of +all categories and modules. Below is a summary of the available modules: + +* **Topology modules** + * `topoaa`: *generates the all-atom topologies for the CNS engine.* +* **Sampling modules** + * `rigidbody`: *Rigid body energy minimization with CNS (`it0` in haddock2.x).* + * `lightdock`: *Third-party glow-worm swam optimization docking software.* +* **Model refinement modules** + * `flexref`: *Semi-flexible refinement using a simulated annealing protocol through molecular dynamics simulations in torsion angle space (`it1` in haddock2.x).* + * `emref`: *Refinement by energy minimisation (`itw` EM only in haddock2.4).* + * `mdref`: *Refinement by a short molecular dynamics simulation in explicit solvent (`itw` in haddock2.X).* + * `openmm`: *Molecular Dynamics refinement module.* +* **Scoring modules** + * `emscoring`: *scoring of a complex performing a short EM (builds the topology and all missing atoms).* + * `mdscoring`: *scoring of a complex performing a short MD in explicit solvent + EM (builds the topology and all missing atoms).* + * `prodigyligand`: *performs the scoring of input complexes using PRODIGY-ligand. It predicts deltaG of the complex and can return predictions as either deltaG or pKd values.* + * `prodigyprotein`: *performs the scoring of input complexes using PRODIGY (protein). It predicts deltaG of the complex and can return predictions as either deltaG or pKd values.* + * `sasascore`: *solvent accessibility analysis based on some user-defined residues that should be buried or accessible.* +* **Analysis modules** + * `caprieval`: *Calculates CAPRI metrics (i-RMSD, l-RMSD, Fnat, DockQ) with respect to the top scoring model or reference structure if provided.* + * `clustfcc`: *Clusters models based on the fraction of common contacts (FCC)* + * `clustrmsd`: *Clusters models based on pairwise RMSD matrix calculated with the `rmsdmatrix` module.* + * `rmsdmatrix`: *Calculates the pairwise RMSD matrix between all the models generated in the previous step.* + * `ilrmsdmatrix`: *calculates of the interface-ligand RMSD (ilRMSD) matrix between all the models generated in the previous step.* + * `seletop`: *Selects the top N models from the previous step.* + * `seletopclusts`: *Selects top N clusters from the previous step.* + * `alascan`: *For each model, the module will mutate the interface residues and calculate the energy differences between the wild type and the mutant, thus providing a measure of the impact of such mutation.* + * `contactmap`: *aims at generating heatmaps and chordcharts of the contacts observed in the input complexes.* +* **Extra modules** + * `exit`: *Stop the workflow when this module is reached.* + +The HADDOCK3 workflows are defined in simple configuration text files, similar to the TOML format but with extra features. +Contrarily to HADDOCK2.X which follows a rigid (yet highly parameterisable) +procedure, in HADDOCK3, you can create your own simulation workflows by +combining a multitude of independent modules that perform specialized tasks. + + +
+
+ +## Software requirements + + +### Installing HADDOCK3 + +In this tutorial we will make use of the HADDOCK3 version. In case HADDOCK3 +is not pre-installed in your system you will have to install it. + +To obtain HADDOCK3, fill the [registration form](https://docs.google.com/forms/d/e/1FAIpQLScDcd0rWtuzJ_4nftkDAHoLVwr1IAVwNJGhbaZdTYZ4vWu25w){:target="_blank"}, navigate to [its repository][haddock-repo]{:target="_blank"}, and then follow the [installation instructions](https://www.bonvinlab.org/haddock3-user-manual/install.html){:target="_blank"}. + + +### Auxiliary software + +**[PDB-tools][link-pdbtools]**: A useful collection of Python scripts for the +manipulation (renumbering, changing chain and segIDs...) of PDB files is freely +available from our GitHub repository. `pdb-tools` is automatically installed +with HADDOCK3. If you have activated the HADDOCK3 Python environment you have +access to the pdb-tools package. + +**[PyMol][link-pymol]**: We will make use of PyMol for visualization. If not +already installed on your system, download and install PyMol. + + +
+
+ +## Preparing PDB files for docking + +In this section we will prepare the PDB files of the two proteins for docking. +Crystal structures are available from the [PDBe database](https://www.pdbe.org){:target="_blank"}. +Throughout this step, we will use `pdb-tools` from the command line. + +_**Note**_ that `pdb-tools` is also available as a [web service](https://wenmr.science.uu.nl/pdbtools/){:target="_blank"}. + + +_**Note**_: Before starting to work on the tutorial, make sure to activate haddock3 (follow the workshop-specific instructions above), or, e.g. if installed using `conda` + + +conda activate haddock3 + + + +
+ +### Inspecting and preparing E2A for docking + +We will now inspect the E2A structure. For this start PyMOL and in the command line window of PyMOL (indicated by PyMOL>) type: + + +fetch 1F3G
+show cartoon
+hide lines
+show sticks, resn HIS
+
+ +You should see a backbone representation of the protein with only the histidine side-chains visible. +Try to locate the histidines in this structure. + +Is there any phosphate group present in this structure? + +Note that you can zoom on the histidines by typing in PyMOL: + +zoom resn HIS + +Revert to a full view with: + +zoom vis + +As a preparation step before docking, it is advised to remove any irrelevant water and other small molecules (e.g. small molecules from the crystallisation buffer), however do leave relevant co-factors if present. For E2A, the PDB file only contains water molecules. You can remove those in PyMOL by typing: + +remove resn HOH + +Now let us vizualize the residues affected by binding as identified by NMR. From [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"} the following residues of E2A were identified has having significant chemical shift perturbations: + +38,40,45,46,69,71,78,80,94,96,141 + +We will now switch to a surface representation of the molecule and highlight the NMR-defined interface. In PyMOL type the following commands: + + +color white, all
+show surface
+select e2a_active, (1F3G and resi 38,40,45,46,69,71,78,80,94,96,141)
+color red, e2a_active
+
+ +
+ +
+ +Inspect the surface. + +Do the identified residues form a well defined patch on the surface? +Do they form a contiguous surface? + +The answer to the last question should be no: We can observe residue in the center of the patch that do not seem significantly affected while still being in the middle of the defined interface. This is the reason why in HADDOCK we also define "*passive*" residues that correspond to surface neighbors of active residues. These can be selected manually, or more conveniently you can let the HADDOCK server do it for you (see [Setting up the docking run](#setting-up-the-docking-run) below). + +As final step save the molecule as a new PDB file which we will call: *e2a_1F3G.pdb*
+For this in the PyMOL menu on top select: + +File -> Export molecule... +Click on the save button +Select as ouptut format PDB (*.pdb *.pdb.gz) +Name your file *e2a_1F3G.pdb* and note its location + +After saving the molecule delete it from the Pymol window or close Pymol. You can remove the molecule by typing this into the command line window of PyMOL: + + +delete 1F3G + + +In a terminal, make sure that E2A chain is A. + + +pdb_chain -A e2a_1F3G.pdb | pdb_chainxseg > e2a_1F3G_clean.pdb + + +This will be usefull in the docking phase, as HADDOCK3 needs different chain associated to each protein involved in the docking. + +
+ +### Adding a phosphate group + +Since the biological function of this complex is to transfer a phosphate group from one protein to another, via histidines side-chains, it is relevant to make sure that a phosphate group be present for docking. As we have seen above none is currently present in the PDB files. HADDOCK does support a list of modified amino acids which you can find at the following link: [https://wenmr.science.uu.nl/haddock2.4/library](https://wenmr.science.uu.nl/haddock2.4/library){:target="_blank"}. + +Check the list of supported modified amino acids. +What is the proper residue name for a phospho-histidine in HADDOCK? + +In order to use a modified amino-acid in HADDOCK, the only thing you will need to do is to edit the PDB file and change the residue name of the amino-acid you want to modify. Don not bother deleting irrelevant atoms or adding missing ones, HADDOCK will take care of that. For E2A, the histidine that is phosphorylated has residue number 90. In order to change it to a phosphorylated histidine do the following: + +Edit the PDB file (*e2a_1F3G_clean.pdb*) in your favorite text editor +Change the name of histidine 90 to NEP +Save the file (as simple text file) under a new name, e.g. *e2aP_1F3G.pdb* + +**Note:** The same procedure can be used to introduce a mutation in an input protein structure. + + +
+ +### Inspecting and preparing HPR for docking + +We will now inspect the HPR structure. For this start PyMOL and in the command line window of PyMOL type: + + +fetch 1HDN
+show cartoon
+hide lines
+
+ +Since this is an NMR structure it does not contain any water molecules and we don't need to remove them. + +Let's vizualize the residues affected by binding as identified by NMR. From [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"} the following residues were identified has having significant chemical shift perturbations: + +15,16,17,20,48,49,51,52,54,56 + +We will now switch to a surface representation of the molecule and highlight the NMR-defined interface. In PyMOL type the following commands: + + +color white, all
+show surface
+select hpr_active, (1HDN and resi 15,16,17,20,48,49,51,52,54,56)
+color red, hpr_active
+
+ +Again, inspect the surface. + +Do the identified residues form a well defined patch on the surface? +Do they form a contiguous surface? + +Now since this is an NMR structure, it actually consists of an ensemble of models. HADDOCK can handle such ensemble, using each conformer in turn as starting point for the docking. We however recommend to limit the number of conformers used for docking, since the number of conformer combinations of the input molecules might explode (e.g. 10 conformers each will give 100 starting combinations and if we generate 1000 ridig body models (see [HADDOCK general concepts](#haddock-general-concepts) above) each combination will only be sampled 10 times). + +Now let's vizualise this NMR ensemble. In PyMOL type: + + +hide all
+show ribbon
+set all_states, on
+
+ +You should now be seing the 30 conformers present in this NMR structure. To illustrate the potential benefit of using an ensemble of conformations as starting point for docking let's look at the side-chains of the active residues: + + +show lines, hpr_active
+
+ +
+ +
+ +You should be able to see the amount of conformational space sampled by those surface side-chains. You can clearly see that some residues do sample a large variety of conformations, one of which might lead to much better docking results. + +**Note:** Pre-sampling of possible conformational changes can thus be beneficial for the docking, but again do limit the number of conformers used for the docking (or increase the number of sampled models, which is possible for users with expert- or guru-level access. The default access level is however only easy - for a higher level access do request it after registration). + +As final step, save the molecule as a new PDB file which we will call: *hpr-ensemble.pdb* +For this in the PyMOL menu select: + +File -> Export molecule... +Select as State 0 (all states) +Click on Save... +Select as ouptut format PDB (*.pdb *.pdb.gz) +Name your file *hpr-ensemble.pdb* and note its location + + +In a terminal, make sure that hpr chain is B. + + +pdb_chain -B hpr-ensemble.pdb | pdb_chainxseg > hpr-ensemble_clean.pdb + + +This will be usefull in the docking phase, as HADDOCK3 needs different chain associated to each protein involved in the docking. + + +
+
+ +## Defining restraints for docking + +Before setting up the docking we need first to generate distance restraint files +in a format suitable for HADDOCK. HADDOCK uses [CNS][link-cns]{:target="_blank"} as computational +engine. A description of the format for the various restraint types supported by +HADDOCK can be found in our [Nature Protocol][nat-pro]{:target="_blank"} paper, Box 4. + +Distance restraints are defined as: + +
+assign (selection1) (selection2) distance, lower-bound correction, upper-bound correction
+
+ +The lower limit for the distance is calculated as: distance minus lower-bound +correction and the upper limit as: distance plus upper-bound correction. The +syntax for the selections can combine information about chainID - `segid` +keyword -, residue number - `resid` keyword -, atom name - `name` keyword. +Other keywords can be used in various combinations of OR and AND statements. +Please refer for that to the [online CNS manual](http://cns-online.org/v1.3/){:target="_blank"}. + +
+ +### Defining active and passive residues for E2A + +As stated before, the following residues were identified has having significant chemical shift perturbations from [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"}: + +38,40,45,46,69,71,78,80,94,96,141 + +Hence, we are using these residues as `active` residues for the docking run. However, we have to define `passive` residues before the run. +These passive residues allows us to deal with potentially incomplete binding sites by defining surface neighbors as `passive` residues. +These are added to the definition of the interface but will not lead to any energetic penalty if they are not part of the +binding site in the final models, while the residues defined as `active` (typically the identified or predicted binding +site residues) will. When using the HADDOCK server, `passive` residues will be automatically defined. Here since we are +using a local version, we need to define those manually and create a file in which the active and passive residues will be listed. + +This can easily be done using a haddock3 command line tool in the following way: + + +echo "38 40 45 46 69 71 78 80 94 96 141" > e2a.act-pass +haddock3-restraints passive_from_active e2a_1F3G.pdb 38,40,45,46,69,71,78,80,94,96,141 >> e2a.act-pass + + +The NMR-identified residues and their surface neighbors generated with the above command can be used to define ambiguous interactions restraints, either using the NMR identified residues as active in HADDOCK, or combining those with the surface neighbors and use this combination as passive only. Here we decided to treat the NMR-identified residues as active residues. +Note the file consists of two lines, with the first one defining the `active` residues and +the second line the `passive` ones. We will use later these files to generate the ambiguous distance restraints for HADDOCK. + +In general it is better to be too generous rather than too strict in the +definition of passive residues. + +An important aspect is to filter both the active (the residues identified from +your mapping experiment) and passive residues by their solvent accessibility. +Our web service uses a default relative accessibility of 15% as cutoff. This is +not a hard limit. You might consider including even more buried residues if some +important chemical group seems solvent accessible from a visual inspection. + +
+ +### Defining active and passive residues for HPR + +As stated before, the following residues were identified has having significant chemical shift perturbations from [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"}: + +15,16,17,20,48,49,51,52,54,56 + +Using the same haddock3 command line tool: + + +echo "15 16 17 20 48 49 51 52 54 56" > hpr.act-pass +haddock3-restraints passive_from_active hpr-ensemble.pdb 15,16,17,20,48,49,51,52,54,56 >> hpr.act-pass + + +
+ +### Defining the ambiguous interaction restraints + +Once you have defined your active and passive residues for both molecules, you +can proceed with the generation of the ambiguous interaction restraints (AIR) file for HADDOCK. +For this you can either make use of our online [haddock-restraints](https://rascar.science.uu.nl/haddock-restraints) web service, entering the +list of active and passive residues for each molecule, and saving the resulting +restraint list to a text file, or use our haddock3 command line tool. + +To use our haddock3 command line tool you need to create for each molecule a file containing two lines: + +* The first line corresponds to the list of active residues (numbers separated by spaces) +* The second line corresponds to the list of passive residues. + +* For E2A (the file called `e2a.act-pass`): +
+38 40 45 46 69 71 78 80 94 96 141
+35 37 39 42 43 44 47 48 64 66 68 70 72 74 81 82 83 84 86 88 97 98 99 100 105 109 110 131 132 133 142 143 144 145
+
+ +* and for HPR (the file called `hpr.act-pass`): +
+15 16 17 20 48 49 51 52 54 56
+9 10 11 12 21 24 25 37 38 40 41 43 45 46 47 53 55 57 58 59 60 84 85
+
+ +Using those two files, we can generate the CNS-formatted AIR restraint files +with the following command: + + +haddock3-restraints active_passive_to_ambig e2a.act-pass hpr.act-pass \-\-segid-one A \-\-segid-two B > e2a-hpr_air.tbl + + +This generates a file called `ambig-prot-prot.tbl` that contains the AIR +restraints. The default distance range for those is between 0 and 2Å, which +might seem short but makes senses because of the 1/r^6 summation in the AIR +energy function that makes the effective distance be significantly shorter than +the shortest distance entering the sum. + +The effective distance is calculated as the SUM over all pairwise atom-atom +distance combinations between an active residue and all the active+passive on +the other molecule: SUM[1/r^6]^(-1/6). + +If you modify manually this file, it is possible to quickly check if the format is valid. +To do so, you can find in our [haddock-tools][haddock-tools] repository a folder named +`haddock_tbl_validation` that contains a script called `validate_tbl.py` (also provided here in the `scripts` directory). +To use it, type: + + +python ./scripts/validate_tbl.py \-\-silent e2a-hpr_air.tbl + + +No output means that your TBL file is valid. + +
+
+ +## Setting up the docking with HADDOCK3 + +Now that we have all required files at hand (PBD and restraints files) it is time to setup our docking protocol. +For this we need to create a HADDOCK3 configuration file that will define the docking workflow. In contrast to HADDOCK2.X, +we have much more flexibility in doing this. We will illustrate this flexibility by introducing a clustering step +after the initial rigid-body docking stage, select up to 10 models per cluster and refine all of those. + +HADDOCK3 also provides an analysis module (`caprieval`) that allows +to compare models to either the best scoring model (if no reference is given) or a reference structure, which in our case +we have at hand. This will directly allow us to assess the performance of the protocol for the following two scenarios: + +1. Scenario 1: 1000 rigidbody docking models, selection of top200 and flexible refinement + EM +3. Scenario 2: 1000 rigidbody docking models, FCC clustering and selection of max 20 models per cluster followed by flexible refinement and EM + +The basic workflow for all three scenarios will consists of the following modules, with some differences in the parameter settings (see below): + +1. **`topoaa`**: *Generates the topologies for the CNS engine and build missing atoms* +2. **`rigidbody`**: *Rigid body energy minimisation (`it0` in haddock2.x)* +3. **`clustfcc`**: *Clustering of models based on the fraction of common contacts (FCC)* +4. **`seletopclusts`**: *Selection of the top10 models of all clusters* +5. **`flexref`**: *Semi-flexible refinement of the interface (`it1` in haddock2.4)* +6. **`emref`**: *Final refinement by energy minimisation (`itw` EM only in haddock2.4)* +7. **`clustfcc`**: *Clustering of models based on the fraction of common contacts (FCC)* +8. **`caprieval`**: *Calculates CAPRI metrics (i-RMSD, l-RMSD, Fnat, DockQ) with respect to the top scoring model or reference structure if provided* + +The input PDB and restraints files are the same for the two scenarios. The differences are in the sampling at the rigid body stage. + + +
+ +### HADDOCK3 execution modes + +HADDOCK3 currently supports three difference execution modes that are defined in the first section of the configuration file of a run. + +#### 1. local mode + +In this mode HADDOCK3 will run on the current system, using the defined number of cores (`ncores`) in the config file +to a maximum of the total number of available cores on the system minus one. An example of the relevant parameters to be defined in the first section of the config file is: + +{% highlight toml %} +# compute mode +mode = "local" +# 1 nodes x 50 ncores +ncores = 50 +{% endhighlight %} + +In this mode HADDOCK3 can be started from the command line with as argument the configuration file of the defined workflow. + + +haddock3 \ + + +Alternatively redirect the output to a log file and send haddock3 to the background. + + +haddock3 \ \> haddock3.log & + + +_**Note**_: This is also the execution mode that should be used for example when submitting the HADDOCK3 job to a node of a cluster, requesting X number of cores. + +
+ + View an example script for submitting via the slurm batch system expand_more + + + {% highlight shell %} + #!/bin/bash + #SBATCH --nodes=1 + #SBATCH --tasks-per-node=50 + #SBATCH -J haddock3 + #SBATCH --partition=medium + + # load haddock3 module + module load haddock3 + # or activate the haddock3 conda environment + ##source $HOME/miniconda3/etc/profile.d/conda.sh + ##conda activate haddock3 + + # go to the run directory + cd $HOME/HADDOCK3-protein-protein-basic + + # execute + haddock3 docking-protein-protein-full.cfg + {% endhighlight %} +
+
+ +
+ +#### 2. batch mode + +In this mode HADDOCK3 will typically be started on your local server (e.g. the login node) and will dispatch jobs to the batch system of your cluster. +Two batch systems are currently supported: `slurm` and `torque` (defined by the `batch_type` parameter). In the configuration file you will +have to define the `queue` name and the maximum number of concurrent jobs sent to the queue (`queue_limit`). Since HADDOCK3 single model +calculations are quite fast, it is recommended to calculate multiple models within one job submitted to the batch system. +The number of model per job is defined by the `concat` parameter in the configuration file. +You want to avoid sending thousands of very short jobs to the batch system if you want to remain friend with your system administrators... + +An example of the relevant parameters to be defined in the first section of the config file is: + +{% highlight toml %} +# compute mode +mode = "batch" +# batch system +batch_type = "slurm" +# queue name +queue = "short" +# number of concurrent jobs to submit to the batch system +queue_limit = 50 +# number of models to produce per submitted job +concat = 10 +{% endhighlight %} + +In this mode HADDOCK3 can be started from the command line as for the local mode. + +#### 3. MPI mode + +HADDOCK3 supports a parallel MPI implementation (functional but still very experimental at this stage). For this to work, the `mpi4py` library +must have been installed at installation time. Refer to the [MPI-related instructions](https://www.bonvinlab.org/haddock3/tutorials/mpi.html). +The execution mode should be set to `mpi` and the total number of cores should match the requested resources when submitting to the batch system. + +An example of the relevant parameters to be defined in the first section of the config file is: + +{% highlight toml %} +# compute mode +mode = "mpi" +# 1 nodes x 50 tasks = ncores = 50 +ncores = 50 +{% endhighlight %} + +In this execution mode the HADDOCK3 job should be submitted to the batch system requesting the corresponding number of nodes and cores per node. + +
+ + View an example script for submitting an MPI HADDOCK3 job the slurm batch system expand_more + + {% highlight shell %} + #!/bin/bash + #SBATCH --nodes=5 + #SBATCH --tasks-per-node=50 + #SBATCH -J haddock3mpi + + # load haddock3 module + module load haddock3 + # or make sure haddock3 is activated + ##source $HOME/miniconda3/etc/profile.d/conda.sh + ##conda activate haddock3 + + # go to the run directory + # edit if needed to specify the correct location + cd $HOME/HADDOCK3-protein-protein-basic + + # execute + haddock3 docking-protein-protein-full.cfg + {% endhighlight %} +
+
+ +
+ +### Scenario 1: 1000 rigidbody docking models, selection of top 200 and flexible refinement + EM + +Now that we have all data ready, and know about execution modes of HADDOCK3 it is time to setup the docking for the first scenario. The restraint file to use for this is `e2a-hpr_air.tbl`. We proceed to produce 1000 rigidbody docking models, from which 200 will be selected and refined through flexible refinement and energy minimization. +This corresponds to the default docking scenario of the HADDOCK2.X version. + +For the analysis following the docking results, we are using the solved complex [1GGR](https://www.rcsb.org/structure/1GGR), named e2a-hpr_1GGR.pdb. +The configuration file for this scenario is: + +{% highlight toml %} +# ==================================================================== +# Protein-protein docking example with NMR-derived ambiguous interaction restraints + +# directory in which the scoring will be done +run_dir = "run1-full" + +# execution mode +mode = "local" +# maximum of 50 cores (limited by the number of available cores) +ncores = 50 + +# molecules to be docked +molecules = [ + "data/e2aP_1F3G.pdb", + "data/hpr-ensemble_clean.pdb" + ] + +# ==================================================================== +# Parameters for each stage are defined below, prefer full paths +# ==================================================================== +[topoaa] +autohis = true + +[rigidbody] +tolerance = 5 +ambig_fname = "data/e2a-hpr_air.tbl" + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[seletop] + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[flexref] +tolerance = 5 +ambig_fname = "data/e2a-hpr_air.tbl" + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[emref] +tolerance = 5 +ambig_fname = "data/e2a-hpr_air.tbl" + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[clustfcc] + +[seletopclusts] + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +# ==================================================================== +{% endhighlight %} + +This configuration file is provided in the `haddock3` directory of the downloaded data set for this tutorial as `docking-protein-protein-full.cfg`. + +If you have everything ready, you can launch haddock3 either from the command line, or, better, +submitting it to the batch system requesting in this local run mode a full node (see local execution mode above). + +
+ +### Scenario 2: 1000 rigidbody docking models, FCC clustering and selection of max 20 models per cluster followed by flexible refinement and EM + +In scenario 2, we proceed to produce 1000 rigidbody docking models, from which we proceed to do a first clustering analysis. From the top clusters a flexible refinement then energy minization is done. +This scenario illustrates the new flexibility of HADDOCK3, adding a clustering step after rigid-body docking, which is not possible in the HADDOCK2.X version. + +For the analysis following the docking results, we are using the solved complex [1GGR](https://www.rcsb.org/structure/1GGR), named e2a-hpr_1GGR.pdb. +The configuration file for this scenario is: + +{% highlight toml %} +# ==================================================================== +# Protein-protein docking example with NMR-derived ambiguous interaction restraints +# ==================================================================== + +# directory in which the scoring will be done +run_dir = "run2-full" + +# execution mode +mode = "local" +# maximum of 50 cores (limited by the number of available cores) +ncores = 50 + +# molecules to be docked +molecules = [ + "data/e2aP_1F3G.pdb", + "data/hpr-ensemble_clean.pdb" + ] + +# ==================================================================== +# Parameters for each stage are defined below, prefer full paths +# ==================================================================== + +[topoaa] +autohis = true + +[rigidbody] +tolerance = 5 +ambig_fname = "data/e2a-hpr_air.tbl" + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[clustfcc] + +[seletopclusts] +# select the best 20 models of each cluster +top_models = 20 + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[flexref] +tolerance = 5 +ambig_fname = "data/e2a-hpr_air.tbl" + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[emref] +tolerance = 5 +ambig_fname = "data/e2a-hpr_air.tbl" + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[clustfcc] + +[seletopclusts] + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +# ==================================================================== +{% endhighlight %} + +This configuration file is provided in the `haddock3` directory of the downloaded data set for this tutorial as `docking-protein-protein-cltsel-full.cfg`. + +If you have everything ready, you can launch haddock3 either from the command line, or, better, submitting it to the batch system requesting in this local run mode a full node (see local execution mode above). + +
+
+ +## Analysis of docking results + +### Structure of the run directory + +Once your run has completed inspect the content of the resulting directory. You will find the various steps (modules) of the defined workflow numbered sequentially, e.g. for scenario 2: + +{% highlight shell %} +> ls scenario2/ + 00_topoaa/ + 01_rigidbody/ + 02_caprieval/ + 03_clustfcc/ + 04_seletopclusts/ + 05_caprieval/ + 06_flexref/ + 07_caprieval/ + 08_emref/ + 09_caprieval/ + 10_clustfcc/ + 11_seletopclusts/ + 12_caprieval/ + analysis/ + data/ + log +{% endhighlight %} + +There is in addition the log file (text file) and two additional directories: + +- the `data` directory containing the input data (PDB and restraint files) for the various modules +- the `analysis` directory containing various plots to visualise the results for each `caprieval` step + +You can find information about the duration of the run at the bottom of the log file. Each sampling/refinement/selection module will contain PBD files. + +For example, the `X_seletopclusts` directory contains the selected models from each cluster. The clusters in that directory are numbered based +on their rank, i.e. `cluster_1` refers to the top-ranked cluster. Information about the origin of these files can be found in that directory in the `seletopclusts.txt` file. + +The simplest way to extract ranking information and the corresponding HADDOCK scores is to look at the `X_caprieval` directories (which is why it is a good idea to have it as the final module, and possibly as intermediate steps). This directory will always contain a `capri_ss.tsv` file, which contains the model names, rankings and statistics (score, iRMSD, Fnat, lRMSD, ilRMSD and dockq score). E.g.: + +
+model	md5	caprieval_rank	score	irmsd	fnat	lrmsd	ilrmsd	dockq	cluster_id	cluster_ranking	model-cluster_ranking	air	angles	bonds	bsa	cdih	coup	dani	desolv	dihe	elec	improper	rdcs	rg	sym	total	vdw	vean	xpcs
+../07_emref/emref_33.pdb	-	1	-147.229	0.894	0.889	1.452	1.542	0.866	-	-	-	6.877	0.000	0.000	1533.550	0.000	0.000	0.000	-10.230	0.000	-522.517	0.000	0.000	0.000	0.000	-548.824	-33.184	0.000	0.000
+../07_emref/emref_3.pdb	-	2	-145.818	0.949	0.917	2.103	1.801	0.858	-	-	-	7.810	0.000	0.000	1569.000	0.000	0.000	0.000	-9.026	0.000	-533.832	0.000	0.000	0.000	0.000	-556.827	-30.806	0.000	0.000
+../07_emref/emref_52.pdb	-	3	-141.925	1.016	0.889	1.378	1.678	0.850	-	-	-	12.488	0.000	0.000	1591.170	0.000	0.000	0.000	-9.507	0.000	-482.747	0.000	0.000	0.000	0.000	-507.376	-37.117	0.000	0.000
+../07_emref/emref_4.pdb	-	4	-141.400	1.067	0.778	2.299	2.094	0.791	-	-	-	4.617	0.000	0.000	1515.630	0.000	0.000	0.000	-10.495	0.000	-526.925	0.000	0.000	0.000	0.000	-548.288	-25.981	0.000	0.000
+../07_emref/emref_81.pdb	-	5	-137.507	1.569	0.639	4.430	3.047	0.634	-	-	-	30.617	0.000	0.000	1562.350	0.000	0.000	0.000	-16.298	0.000	-442.005	0.000	0.000	0.000	0.000	-447.257	-35.870	0.000	0.000
+....
+
+ +If clustering is performed prior to calling the `caprieval` module, the `capri_ss.tsv` will also contain information about to which cluster the model belongs to and its ranking within the cluster as shown above. + +The relevant statistics are: + +* **score**: *the HADDOCK score (arbitrary units)* +* **irmsd**: *the interface RMSD, calculated over the interfaces the molecules* +* **fnat**: *the fraction of native contacts* +* **lrmsd**: *the ligand RMSD, calculated on the ligand after fitting on the receptor (1st component)* +* **ilrmsd**: *the interface-ligand RMSD, calculated over the interface of the ligand after fitting on the interface of the receptor (more relevant for small ligands for example)* +* **dockq**: *the DockQ score, which is a combination of irmsd, lrmsd and fnat and provides a continuous scale between 1 (equal to reference) and 0* + +The iRMSD, lRMSD and Fnat metrics are the ones used in the blind protein-protein prediction experiment [CAPRI](https://capri.ebi.ac.uk/) (Critical PRediction of Interactions). + +In CAPRI the quality of a model is defined as (for protein-protein complexes): + +* **acceptable model**: i-RMSD < 4Å or l-RMSD<10Å and Fnat > 0.1 (0.23 < DOCKQ < 0.49) +* **medium quality model**: i-RMSD < 2Å or l-RMSD<5Å and Fnat > 0.3 (0.49 < DOCKQ < 0.8) +* **high quality model**: i-RMSD < 1Å or l-RMSD<1Å and Fnat > 0.5 (DOCKQ > 0.8) + + +What is based on this CAPRI criterion the quality of the best model listed above (emref_33.pdb)? + + +In case the `caprieval` module is called after a clustering step an additional file will be present in the directory: `capri_clt.tsv`. +This file contains the cluster ranking and score statistics, averaged over the minimum number of models defined for clustering +(4 by default), with their corresponding standard deviations. E.g.: + +
+cluster_rank    cluster_id      n       under_eval      score   score_std       irmsd   irmsd_std       fnat    fnat_std        lrmsd   lrmsd_std       dockq   dockq_std       air     air_std bsa     bsa_std desolv  desolv_std      elec    elec_std        total   total_std       vdw     vdw_std caprieval_rank
+1       1       4       -       -124.146        3.141   1.022   0.113   0.785   0.074   1.812   0.477   0.808   0.045   19.088  8.507   1493.348        101.980 -14.374 2.868   -390.668        44.141  -405.127        39.003  -33.547 7.112   1
+2       2       4       -       -109.733        4.447   8.384   0.538   0.153   0.063   15.962  0.969   0.135   0.029   64.065  29.996  1461.225        113.842 -13.164 2.827   -394.903        13.092  -354.834        34.074  -23.996 4.254   2
+3       6       4       -       -105.989        3.889   4.022   0.232   0.243   0.050   6.572   0.337   0.331   0.025   38.555  17.146  1385.205        39.561  -6.273  3.174   -425.420        56.558  -405.353        38.939  -18.487 5.586   3
+...
+
+ +In this file you find the cluster rank, the cluster ID (which is related to the size of the cluster, 1 being always the largest cluster), the number of models (n) in the cluster and the corresponding statistics (averages + standard deviations). The corresponding cluster PDB files will be found in the processing `X_seletopclusts` directory. + +
+ +### Analysis scenario 1: + +Let us now analyze the docking results for this scenario. Use for that either your own run or a pre-calculated run provided in the `runs` directory (note that to save space only partial data have been kept in this pre-calculated runs, but all relevant information for this tutorial is available). + +First of all let us check the final cluster statistics. + +Inspect the _capri_clt.tsv_ file + +
+ +View the pre-calculated 11_caprieval/capri_clt.tsv file expand_more + +
+cluster_rank    cluster_id      n       under_eval      score   score_std       irmsdirmsd_std        fnat    fnat_std        lrmsd   lrmsd_std       dockq   dockq_std    ilrmsd   ilrmsd_std      air     air_std bsa     bsa_std desolv  desolv_std      elec elec_std total   total_std       vdw     vdw_std caprieval_rank
+1       1       132     -       -136.315        2.459   0.922   0.050   0.847   0.0501.497    0.158   0.848   0.022   1.577   0.100   17.510  10.499  1592.155        26.85-11.290  2.460   -477.868        20.524  -491.561        13.390  -31.203 1.856   1     
+2       2       41      -       -118.410        9.418   7.843   0.237   0.194   0.00014.976   0.870   0.158   0.008   14.161  0.256   33.123  27.142  1525.405        19.48-11.788  2.649   -396.013        33.391  -393.621        55.889  -30.732 8.145   2     
+3       3       8       -       -87.144 5.206   3.741   0.418   0.333   0.039   7.4090.410    0.348   0.025   7.643   0.422   41.435  13.967  1290.872        72.223  -15.930       4.468   -245.765        38.007  -230.535        31.740  -26.204 3.205   3     
+4       4       4       -       -55.138 9.488   2.340   0.218   0.292   0.031   5.7850.727    0.424   0.019   5.334   0.773   42.306  19.922  960.189 142.370 -13.059 3.913-158.379 14.190  -130.707        26.432  -14.634 3.528   4
+
+
+
+ +How many clusters are generated? + +Look at the score of the first few clusters: Are they significantly different if you consider their average scores and standard deviations? + +Since for this tutorial we have at hand the crystal structure of the complex, we provided it as reference to the `caprieval` modules. +This means that the iRMSD, lRMSD, Fnat and DockQ statistics report on the quality of the docked model compared to the reference crystal structure. + +How many clusters of acceptable or better quality have been generate according to CAPRI criteria? + +What is the rank of the best cluster generated? + +What is the rank of the first acceptable of better cluster generated? + + +We are providing in the `scripts` directory a simple script that extract some cluster statistics for acceptable or better clusters from the `caprieval` steps. +To use is simply call the script with as argument the run directory you want to analyze, e.g.: + + + ./scripts/extract-capri-stats-clt.sh ./run1-full + + +
+ + View the output of the script expand_more + +
+==============================================
+== run1-full/02_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  0  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:   i-RMSD:   Fnat:   DockQ: 
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  6.407  Fnat:  0.202  DockQ:  0.264      
+==============================================
+== run1-full/04_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  0  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:   i-RMSD:   Fnat:   DockQ: 
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  6.407  Fnat:  0.202  DockQ:  0.264      
+==============================================
+== run1-full/06_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  1  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:  -  i-RMSD:  2.976  Fnat:  0.611  DockQ:  0.601
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  2.976  Fnat:  0.611  DockQ:  0.601      
+==============================================
+== run1-full/08_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  1  out of  1
+Total number of medium or better clusters:      1  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:  -  i-RMSD:  1.673  Fnat:  0.736  DockQ:  0.727
+First medium cluster     - rank:  -  i-RMSD:  1.673  Fnat:  0.736  DockQ:  0.727      
+Best cluster             - rank:  -  i-RMSD:  1.673  Fnat:  0.736  DockQ:  0.727      
+==============================================
+== run1-full/11_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  3  out of  4
+Total number of medium or better clusters:      1  out of  4
+Total number of high quality clusters:          1  out of  4
+
+First acceptable cluster - rank:  1  i-RMSD:  0.922  Fnat:  0.847  DockQ:  0.848
+First medium cluster     - rank:  1  i-RMSD:  0.922  Fnat:  0.847  DockQ:  0.848      
+Best cluster             - rank:  1  i-RMSD:  0.922  Fnat:  0.847  DockQ:  0.848      
+
+
+ +
+ +Similarly some simple statistics can be extracted from the single model `caprieval` `capri_ss.tsv` files with the `extract-capri-stats.sh` script: + + + + ./scripts/extract-capri-stats.sh ./runs/run1-full + + +
+ +View the output of the script: expand_more + +
+==============================================
+== run1-full/02_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  365  out of  1000
+Total number of medium or better models:      199  out of  1000
+Total number of high quality models:          0  out of  1000
+
+First acceptable model - rank:  3  i-RMSD:  1.153  Fnat:  0.556  DockQ:  0.711
+First medium model     - rank:  3  i-RMSD:  1.153  Fnat:  0.556  DockQ:  0.711        
+Best model             - rank:  46  i-RMSD:  1.145  Fnat:  0.556  DockQ:  0.713       
+==============================================
+== run1-full/04_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  144  out of  200
+Total number of medium or better models:      137  out of  200
+Total number of high quality models:          0  out of  200
+
+First acceptable model - rank:  3  i-RMSD:  1.153  Fnat:  0.556  DockQ:  0.711
+First medium model     - rank:  3  i-RMSD:  1.153  Fnat:  0.556  DockQ:  0.711        
+Best model             - rank:  46  i-RMSD:  1.145  Fnat:  0.556  DockQ:  0.713       
+==============================================
+== run1-full/06_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  147  out of  200
+Total number of medium or better models:      118  out of  200
+Total number of high quality models:          20  out of  200
+
+First acceptable model - rank:  2  i-RMSD:  1.221  Fnat:  0.694  DockQ:  0.727
+First medium model     - rank:  2  i-RMSD:  1.221  Fnat:  0.694  DockQ:  0.727        
+Best model             - rank:  30  i-RMSD:  0.883  Fnat:  0.750  DockQ:  0.823       
+==============================================
+== run1-full/08_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  147  out of  200
+Total number of medium or better models:      118  out of  200
+Total number of high quality models:          34  out of  200
+
+First acceptable model - rank:  1  i-RMSD:  1.219  Fnat:  0.833  DockQ:  0.787
+First medium model     - rank:  1  i-RMSD:  1.219  Fnat:  0.833  DockQ:  0.787        
+Best model             - rank:  39  i-RMSD:  0.807  Fnat:  0.833  DockQ:  0.862       
+==============================================
+== run1-full/11_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  141  out of  185
+Total number of medium or better models:      116  out of  185
+Total number of high quality models:          34  out of  185
+
+First acceptable model - rank:  1  i-RMSD:  0.907  Fnat:  0.917  DockQ:  0.871
+First medium model     - rank:  1  i-RMSD:  0.907  Fnat:  0.917  DockQ:  0.871        
+Best model             - rank:  36  i-RMSD:  0.807  Fnat:  0.833  DockQ:  0.862          
+
+
+ +
+ +_**Note**_ that this kind of analysis only makes sense when we know the reference complex and for benchmarking / performance analysis purposes. + +Look at the single structure statistics provided by the script + +How does the quality of the model changes after flexible refinement? Consider here the various metrics. + +
+ + Answer expand_more + +

+ In terms of iRMSD values we only observe very small differences in the best models, but the change in ranking is impressive! + The fraction of native contacts and the DockQ scores are however improving much more after flexible refinement. + All this will of course depend on how different are the bound and unbound conformations and the amount of data + used to drive the docking process. In general, from our experience, the more and better data at hand, + the larger the conformational changes that can be induced. +

+
+ +
+ +Is the best model always rank as first? + +
+ + Answer expand_more + +

+ This is clearly not the case. The scoring function is not perfect, but does a reasonable job in ranking models of acceptable or better quality on top in this case. +

+
+ +
+ +#### Analysis scenario 1: visualising the scores and their components + +We have precalculated a number of interactive plots to visualize the scores and their components versus ranks and model quality. + + +Examine the plots (remember here that higher DockQ values and lower i-RMSD values correspond to better models) + + +Models statistics: + +* [iRMSD versus HADDOCK score](plots/scenario1/irmsd_score.html){:target="_blank"} +* [DockQ versus HADDOCK score](plots/scenario1/dockq_score.html){:target="_blank"} + +Cluster statistics (distributions of values per cluster ordered according to their HADDOCK rank): + +* [HADDOCK scores](plots/scenario1/score_clt.html){:target="_blank"} +* [iRMSD](plots/scenario1/irmsd_clt.html){:target="_blank"} +* [DockQ](plots/scenario1/dockq_clt.html){:target="_blank"} + +
+ +### Analysis scenario 2: + +Let us now analyse the docking results for this scenario. Use for that either your own run or a pre-calculated run provided in the `runs` directory. +Go into the _analysis/_caprieval_analysis_ directory of the respective run directory and + +Inspect the final cluster statistics in _capri_clt.tsv_ file + +
+ +View the pre-calculated _caprieval/capri_clt.tsv file expand_more + +
+cluster_rank    cluster_id      n       under_eval      score   score_std       irmsdirmsd_std        fnat    fnat_std        lrmsd   lrmsd_std       dockq   dockq_std    ilrmsd   ilrmsd_std      air     air_std bsa     bsa_std desolv  desolv_std      elec elec_std total   total_std       vdw     vdw_std caprieval_rank
+1       1       37      -       -124.658        10.252  3.857   0.922   0.319   0.0976.660    1.321   0.365   0.085   6.780   1.681   31.615  22.188  1616.990        119.623       -6.778  6.101   -437.724        75.263  -439.605        69.689  -33.496 10.191
+2       3       26      -       -119.435        4.949   0.982   0.026   0.805   0.0522.058    0.408   0.816   0.026   1.781   0.120   29.748  11.990  1522.275        58.81-14.346  5.089   -383.147        87.371  -384.832        89.623  -31.434 9.369   2     
+3       8       15      -       -117.501        8.381   10.507  0.012   0.049   0.02318.245   0.253   0.082   0.008   17.406  0.097   16.941  13.148  1695.840        65.32-11.683  2.440   -305.048        31.227  -334.610        34.942  -46.502 3.538   3     
+4       10      12      -       -115.472        5.836   0.980   0.038   0.812   0.0532.062    0.443   0.819   0.020   1.762   0.114   19.993  10.271  1488.888        64.59-14.848  1.764   -351.208        32.914  -363.598        30.092  -32.382 8.809   4     
+5       2       27      -       -106.389        2.683   9.379   0.146   0.125   0.01416.285   0.693   0.122   0.004   16.768  0.405   20.260  12.423  1359.715        23.92-10.242  1.447   -272.409        33.608  -295.839        37.474  -43.691 4.786   5     
+6       4       25      -       -106.037        2.709   7.852   0.619   0.132   0.07715.047   1.787   0.139   0.042   14.277  0.588   43.187  10.734  1403.977        70.15-13.256  1.092   -361.058        57.590  -342.759        55.416  -24.888 11.965  6     
+7       9       13      -       -105.524        8.380   10.273  0.355   0.076   0.01217.160   0.297   0.098   0.005   16.986  0.601   52.965  34.487  1493.557        88.840.241    1.661   -433.424        58.594  -404.836        36.296  -24.376 10.058  7     
+8       13      11      -       -104.016        12.736  6.651   1.287   0.215   0.04112.319   2.028   0.201   0.046   11.777  2.166   67.269  34.762  1452.928        53.36-7.209   2.522   -367.069        36.068  -329.921        62.280  -30.121 8.255   8     
+9       12      11      -       -100.932        9.238   10.829  0.016   0.132   0.01218.562   0.153   0.108   0.004   17.755  0.101   32.367  14.729  1645.305        104.797       -18.030 2.335   -232.574        32.271  -239.830        42.371  -39.624 7.4289
+...
+
+
+
+ +How many clusters of acceptable or better quality have been generate according to CAPRI criteria? + +What is the rank of the best cluster generated? + +What is the rank of the first acceptable of better cluster generated? + + +In this run we also had a `caprieval` after the clustering of the rigid body models (step 5 of our workflow). + +Inspect the corresponding _capri_clt.tsv_ file + +
+ +View the pre-calculated 5_caprieval/capri_clt.tsv file expand_more + +
+cluster_rank    cluster_id      n       under_eval      score   score_std       irmsdirmsd_std        fnat    fnat_std        lrmsd   lrmsd_std       dockq   dockq_std    ilrmsd   ilrmsd_std      air     air_std bsa     bsa_std desolv  desolv_std      elec elec_std total   total_std       vdw     vdw_std caprieval_rank
+1       4       20      -       -32.647 0.718   8.443   0.050   0.056   0.000   16.670.440    0.098   0.003   15.142  0.029   103.171 30.153  1037.440        40.574  -16.600       0.384   -6.642  0.367   90.292  34.825  -6.237  4.862   1
+2       1       20      -       -32.078 0.309   1.193   0.052   0.563   0.012   2.3440.382    0.701   0.015   2.241   0.176   144.927 37.448  1185.507        24.515  -14.154       0.495   -7.458  0.197   131.527 41.553  -5.942  4.909   2
+3       11      15      -       -31.524 0.512   2.591   0.043   0.306   0.000   5.8830.150    0.411   0.006   5.951   0.125   238.270 90.904  838.533 10.610  -17.621 0.383-7.971   0.168   237.269 95.233  6.969   4.900   3
+4       23      6       -       -31.175 0.237   4.180   0.009   0.285   0.012   7.7030.015    0.316   0.004   8.171   0.036   217.839 78.900  1071.035        16.129  -15.642       0.348   -6.892  0.257   199.998 83.806  -10.949 5.140   4
+5       32      4       -       -30.152 1.356   7.126   0.074   0.069   0.024   16.690.938    0.106   0.014   12.952  0.455   286.907 150.515 1041.192        37.687  -13.618       0.880   -8.950  0.629   273.851 150.190 -4.106  4.566   5
+6       33      4       -       -29.431 2.824   2.660   0.894   0.326   0.121   7.1353.087    0.407   0.141   6.418   2.586   124.179 48.395  917.899 78.204  -13.272 2.489-8.230   0.566   116.856 51.814  0.907   4.084   6
+7       2       20      -       -27.915 0.952   4.133   0.017   0.139   0.020   7.0510.018    0.282   0.007   7.455   0.023   264.450 31.588  1014.276        17.755  -11.711       0.867   -8.673  0.226   252.511 36.667  -3.266  5.371   7
+8       17      11      -       -27.474 1.291   6.676   0.703   0.063   0.012   11.461.246    0.157   0.014   12.049  1.207   303.023 57.328  963.135 62.068  -12.556 1.856-8.338   0.587   296.748 55.220  2.063   6.790   8
+9       13      14      -       -27.374 0.754   10.733  0.011   0.083   0.000   18.250.037    0.094   0.000   17.522  0.031   134.468 43.797  1039.598        13.308  -13.613       0.558   -4.687  0.149   127.422 45.173  -2.360  2.548   9
+...
+
+
+
+ +How many clusters are generated? + +Is this the same number that after refinement (see above)? + +If not what could be the reason? + +Consider again the rank of the first acceptable cluster based on iRMSD values. How does this compare with the refined clusters (see above)? + +
+ + Answer expand_more + +

+ After rigid body docking the first acceptable cluster is at rank 3 and the same is true after refinement, but the iRMSD values have improved. +

+
+ +
+ +Use the `extract-capri-stats-clt.sh` script to extract some simple cluster statistics for this run. + + + ./scripts/extract-capri-stats-clt.sh runs/run2-full/ + + + +
+ + View the output of the script expand_more + +
+==============================================
+== run2-full/02_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  0  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:   i-RMSD:   Fnat:   DockQ: 
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  6.407  Fnat:  0.202  DockQ:  0.264      
+==============================================
+== run2-full/05_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  6  out of  33
+Total number of medium or better clusters:      1  out of  33
+Total number of high quality clusters:          0  out of  33
+
+First acceptable cluster - rank:  2  i-RMSD:  1.193  Fnat:  0.563  DockQ:  0.701
+First medium cluster     - rank:  2  i-RMSD:  1.193  Fnat:  0.563  DockQ:  0.701      
+Best cluster             - rank:  2  i-RMSD:  1.193  Fnat:  0.563  DockQ:  0.701      
+==============================================
+== run2-full/07_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  0  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:   i-RMSD:   Fnat:   DockQ: 
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  8.237  Fnat:  0.104  DockQ:  0.121      
+==============================================
+== run2-full/09_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  0  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:   i-RMSD:   Fnat:   DockQ: 
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  4.840  Fnat:  0.361  DockQ:  0.400      
+==============================================
+== run2-full/12_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  4  out of  25
+Total number of medium or better clusters:      2  out of  25
+Total number of high quality clusters:          2  out of  25
+
+First acceptable cluster - rank:  1  i-RMSD:  3.857  Fnat:  0.319  DockQ:  0.365
+First medium cluster     - rank:  2  i-RMSD:  0.982  Fnat:  0.805  DockQ:  0.816      
+Best cluster             - rank:  4  i-RMSD:  0.980  Fnat:  0.812  DockQ:  0.819      
+
+
+ +
+ +Similarly some simple statistics can be extracted from the single model `caprieval` `capri_ss.tsv` files with the `extract-capri-stats.sh` script: + + +./scripts/extract-capri-stats.sh ./runs/run2-full + + +
+ +View the output of the script expand_more + +
+==============================================
+== run2-full/02_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  365  out of  1000
+Total number of medium or better models:      199  out of  1000
+Total number of high quality models:          0  out of  1000
+
+First acceptable model - rank:  3  i-RMSD:  1.153  Fnat:  0.556  DockQ:  0.711
+First medium model     - rank:  3  i-RMSD:  1.153  Fnat:  0.556  DockQ:  0.711        
+Best model             - rank:  46  i-RMSD:  1.145  Fnat:  0.556  DockQ:  0.713       
+==============================================
+== run2-full/05_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  62  out of  375
+Total number of medium or better models:      22  out of  375
+Total number of high quality models:          0  out of  375
+
+First acceptable model - rank:  3  i-RMSD:  1.153  Fnat:  0.556  DockQ:  0.711
+First medium model     - rank:  3  i-RMSD:  1.153  Fnat:  0.556  DockQ:  0.711        
+Best model             - rank:  46  i-RMSD:  1.145  Fnat:  0.556  DockQ:  0.713       
+==============================================
+== run2-full/07_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  74  out of  375
+Total number of medium or better models:      27  out of  375
+Total number of high quality models:          1  out of  375
+
+First acceptable model - rank:  6  i-RMSD:  1.081  Fnat:  0.750  DockQ:  0.771
+First medium model     - rank:  6  i-RMSD:  1.081  Fnat:  0.750  DockQ:  0.771        
+Best model             - rank:  36  i-RMSD:  0.930  Fnat:  0.778  DockQ:  0.822       
+==============================================
+== run2-full/09_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  74  out of  375
+Total number of medium or better models:      27  out of  375
+Total number of high quality models:          7  out of  375
+
+First acceptable model - rank:  1  i-RMSD:  3.718  Fnat:  0.333  DockQ:  0.382
+First medium model     - rank:  3  i-RMSD:  0.991  Fnat:  0.806  DockQ:  0.821        
+Best model             - rank:  60  i-RMSD:  0.896  Fnat:  0.778  DockQ:  0.828       
+==============================================
+== run2-full/12_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  65  out of  317
+Total number of medium or better models:      27  out of  317
+Total number of high quality models:          7  out of  317
+
+First acceptable model - rank:  1  i-RMSD:  3.718  Fnat:  0.333  DockQ:  0.382
+First medium model     - rank:  3  i-RMSD:  0.991  Fnat:  0.806  DockQ:  0.821        
+Best model             - rank:  54  i-RMSD:  0.896  Fnat:  0.778  DockQ:  0.828       
+
+
+ +
+ +_**Note**_ that this kind of analysis only makes sense when we know the reference complex and for benchmarking / performance analysis purposes. + +Look at the single structure statistics provided by the script + +How does the quality of the model changes after flexible refinement? Consider here the various metrics. + +
+ + Answer expand_more + +

+ In this case we observe a small improvement in terms of iRMSD values as well as in the fraction of native contacts and the DockQ scores. Also the single model rankings have improved, but the top ranked model is not the best one. +

+
+ +
+ +Is the best model always rank as first? + +
+ + Answer expand_more + +

+ This is clearly not the case. The scoring function is not perfect, but does a reasonable job in ranking models of acceptable or better quality on top in this case. +

+
+ +
+ +#### Analysis scenario 2: visualising the scores and their components + +We have precalculated a number of interactive plots to visualize the scores and their components versus ranks and model quality. + + +Examine the plots (remember here that higher DockQ values and lower i-RMSD values correspond to better models) + + +Models statistics: + +* [iRMSD versus HADDOCK score](plots/scenario2/irmsd_score.html){:target="_blank"} +* [DockQ versus HADDOCK score](plots/scenario2/dockq_score.html){:target="_blank"} + +Cluster statistics (distributions of values per cluster ordered according to their HADDOCK rank): + +* [HADDOCK scores](plots/scenario2/score_clt.html){:target="_blank"} +* [iRMSD](plots/scenario2/irmsd_clt.html){:target="_blank"} +* [DockQ](plots/scenario2/dockq_clt.html){:target="_blank"} + +
+ +### Comparing the performance of the two scenarios + +Clearly all three scenarios give good results with an acceptable cluster in all three cases ranked at the top: + +{% highlight shell %} +============================================== +== scenario1-full/11_caprieval/capri_ss.tsv +============================================== +Total number of acceptable or better models: 141 out of 185 +Total number of medium or better models: 116 out of 185 +Total number of high quality models: 34 out of 185 + +First acceptable model - rank: 1 i-RMSD: 0.907 Fnat: 0.917 DockQ: 0.871 +First medium model - rank: 1 i-RMSD: 0.907 Fnat: 0.917 DockQ: 0.871 +Best model - rank: 36 i-RMSD: 0.807 Fnat: 0.833 DockQ: 0.862 + +============================================== +== scenario2-cltsel-full/12_caprieval/capri_ss.tsv +============================================== +Total number of acceptable or better models: 65 out of 317 +Total number of medium or better models: 27 out of 317 +Total number of high quality models: 7 out of 317 + +First acceptable model - rank: 1 i-RMSD: 3.718 Fnat: 0.333 DockQ: 0.382 +First medium model - rank: 3 i-RMSD: 0.991 Fnat: 0.806 DockQ: 0.821 +Best model - rank: 54 i-RMSD: 0.896 Fnat: 0.778 DockQ: 0.828 + +{% endhighlight %} + +While the first two scenarios show similar results, we can observe that scenario 2 produces a higher count of clusters, i.e. a higher conformational diversity than the other scenarios. +This difference is most probably a consequence of the clustering step carried out after the rigidbody docking. In fact, this additional step allowed us to select the best models of each clusters, retaining the diversity produced in the riigid body step, while selecting the overall best ranked models in the first two scenarios showed lower diversity. + +
+
+ +## Biological insights + +The E2A-HPR complex is involved in phosphate-transfer, in which a phosphate group attached to histidine 90 of E2A (which we named NEP) is transferred to a histidine of HPR. As such, the docking models should make sense according to this information, meaning that two histidines should be in close proximity at the interface. Using PyMOL, check the various cluster representatives (we are assuming here you have performed all PyMOL commands of the previous section): + + +select histidines, resn HIS+NEP
+show spheres, histidines
+util.cnc
+
+ +First of all, has the phosphate group been properly generated? + +**Note:** You can zoom on the phosphorylated histidine using the following PyMOL command: + + +zoom resn NEP
+
+ +
+ +
+ +Zoom back to all visible molecules with + + +zoom vis
+
+ +Now inspect each cluster in turn and check if histidine 90 of E2A is in close proximity to another histidine of HPR. +To facilitate this analysis, view each cluster in turn (use the right panel to activate/desactivate the various clusters by clicking on their name). + +Based on this analysis, which cluster does satisfy best the biolocal information? + +Is this cluster also the best ranked one? + +
+ +## Comparison with the reference structure + +As explained in the introduction, the structure of the native complex has been determined by NMR (PDB ID [1GGR](https://www.ebi.ac.uk/pdbe/entry/pdb/1ggr){:target="_blank"}) using a combination of intermolecular NOEs and dipolar coupling restraints. We will now compare the docking models with this structure. + +If you still have all cluster representative open in PyMOL you can proceed with the sub-sequent analysis, otherwise load again each cluster representative as described above. Then, fetch the reference complex by typing in PyMOL: + + +fetch 1GGR
+show cartoon
+color yellow, 1GGR and chain A
+color orange, 1GGR and chain B
+
+ +The number of chain B in this structure is however different from the HPR numbering in the structure we used: It starts at 301 while in our models chain B starts at 1. We can change the residue numbering easily in PyMol with the following command: + + +alter (chain B and 1GGR), resv -=300
+
+ +Then superimpose all cluster representatives on the reference structure, using the entire chain A (E2A): + + +select 1GGR and chain A
+alignto sele
+
+ + +Does any of the cluster representatives ressemble the reference NMR structure? (note: in principle the analysis done above and the caprieval results should allow you to already answer these questions) + + +In case you found a reasonable prediction, what is its cluster rank? + + +
+
+ +## Congratulations! 🎉 + +You have completed this tutorial. If you have any questions or suggestions, feel free to contact us via email or asking a question through our [support center](https://ask.bioexcel.eu){:target="_blank"}. + +And check also our [education](/education) web page where you will find more tutorials! + +
+
+ +## A look into the future Virtual Research Environment for HADDOCK3 + +In the context of a project with the [Netherlands e-Science Center](https://www.esciencecenter.nl){:target="_blank"} we are working on +building a Virtual Research Environment (VRE) for HADDOCK3 that will allow you to build and edit custom workflows, +execute those on a variety of infrastructures (grid, cloud, local, HPC) and provide an interactive analysis +platform for analyzing your HADDOCK3 results. This is _work in progress_ but you can already take a glimpse of the +first component, the workflow builder, [here](https://github.com/i-VRESSE/workflow-builder){:target="_blank"}. + +All the HADDOCK3 VRE software development is open and can be followed from our [GitHub i-VRESSE](https://github.com/i-VRESSE){:target="_blank"} repository. + +So stay tuned! + + +[air-help]: https://www.bonvinlab.org/software/haddock2.4/airs/ "AIRs help" +[gentbl]: https://wenmr.science.uu.nl/gentbl/ "GenTBL" +[haddock24protein]: /education/HADDOCK24/HADDOCK24-protein-protein-basic/ +[haddock-repo]: https://github.com/haddocking/haddock3 "HADDOCK3 GitHub" +[haddock-tools]: https://github.com/haddocking/haddock-tools "HADDOCK tools GitHub" +[installation]: https://www.bonvinlab.org/haddock3/INSTALL.html "Installation" +[link-cns]: https://cns-online.org "CNS online" +[link-forum]: https://ask.bioexcel.eu/c/haddock "HADDOCK Forum" +[link-pdbtools]:http://www.bonvinlab.org/pdb-tools/ "PDB-Tools" +[link-pymol]: https://www.pymol.org/ "PyMOL" +[nat-pro]: https://www.nature.com/nprot/journal/v5/n5/abs/nprot.2010.32.html "Nature protocol" +[tbl-examples]: https://github.com/haddocking/haddock-tools/tree/master/haddock_tbl_validation "tbl examples" diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/dockq_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/dockq_clt.html new file mode 100644 index 000000000..8f89b692d --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/dockq_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/dockq_score.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/dockq_score.html new file mode 100644 index 000000000..e93dd0aba --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/dockq_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/irmsd_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/irmsd_clt.html new file mode 100644 index 000000000..8b5d5ca4e --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/irmsd_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/irmsd_score.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/irmsd_score.html new file mode 100644 index 000000000..a1b9b936e --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/irmsd_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/score_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/score_clt.html new file mode 100644 index 000000000..4ea042277 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario1/score_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/dockq_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/dockq_clt.html new file mode 100644 index 000000000..28caf6e1d --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/dockq_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/dockq_score.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/dockq_score.html new file mode 100644 index 000000000..b930f01f6 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/dockq_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/irmsd_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/irmsd_clt.html new file mode 100644 index 000000000..a428c2b08 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/irmsd_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/irmsd_score.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/irmsd_score.html new file mode 100644 index 000000000..2382496fb --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/irmsd_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/score_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/score_clt.html new file mode 100644 index 000000000..4da3e4e9c --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein-basic/plots/scenario2/score_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/cluster1_rank1_chordchart.html b/education/HADDOCK3/HADDOCK3-protein-protein/cluster1_rank1_chordchart.html new file mode 100644 index 000000000..155d623c5 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/cluster1_rank1_chordchart.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/index.md b/education/HADDOCK3/HADDOCK3-protein-protein/index.md new file mode 100644 index 000000000..28cf5576f --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/index.md @@ -0,0 +1,1526 @@ +--- +layout: page +title: "Protein-Protein modelling tutorial using a local version of HADDOCK3" +excerpt: "A tutorial describing the use of HADDOCK3 to model a Protein-Protein complex" +tags: [HADDOCK, HADDOCK3, installation, preparation, proteins, docking, analysis, workflows] +image: + feature: pages/banner_education-thin.jpg +--- +This tutorial consists of the following sections: + +* table of contents +{:toc} + +
+
+ +## Introduction + +This tutorial demonstrates the use of the new modular HADDOCK3 version for predicting the structure of a protein-protein complex from NMR chemical shift perturbation (CSP) data. +Namely, we will dock two E. coli proteins involved in glucose transport: the glucose-specific enzyme IIA (E2A) and the histidine-containing phosphocarrier protein (HPr). +The structures in the free form have been determined using X-ray crystallography (E2A) (PDB ID [1F3G](https://www.ebi.ac.uk/pdbe/entry/pdb/1f3g){:target="_blank"}) +and NMR spectroscopy (HPr) (PDB ID [1HDN](https://www.ebi.ac.uk/pdbe/entry/pdb/1hdn){:target="_blank"}). +The structure of the native complex has also been determined with NMR (PDB ID [1GGR](https://www.ebi.ac.uk/pdbe/entry/pdb/1ggr){:target="_blank"}). +These NMR experiments have also provided us with an array of data on the interaction itself +(chemical shift perturbations, intermolecular NOEs, residual dipolar couplings, and simulated diffusion anisotropy data), which will be useful for the docking. +For this tutorial, we will only make use of inteface residues identified from NMR chemical shift perturbation data as described +in [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"}. + +Throughout the tutorial, colored text will be used to refer to questions or instructions, and/or PyMOL commands. + +This is a question prompt: try answering it! +This an instruction prompt: follow it! +This is a PyMOL prompt: write this in the PyMOL command line prompt! +This is a Linux prompt: insert the commands in the terminal! + +
+
+ + +## HADDOCK general concepts + +HADDOCK (see [https://www.bonvinlab.org/software/haddock2.4](https://www.bonvinlab.org/software/haddock2.4){:target="_blank"}) +is a collection of python scripts derived from ARIA ([https://aria.pasteur.fr](https://aria.pasteur.fr){:target="_blank"}) +that harness the power of CNS (Crystallography and NMR System – [https://cns-online.org](https://cns-online.org){:target="_blank"}) +for structure calculation of molecular complexes. What distinguishes HADDOCK from other docking software is its ability, +inherited from CNS, to incorporate experimental data as restraints and use these to guide the docking process alongside +traditional energetics and shape complementarity. Moreover, the intimate coupling with CNS endows HADDOCK with the +ability to actually produce models of sufficient quality to be archived in the Protein Data Bank. + +A central aspect of HADDOCK is the definition of Ambiguous Interaction Restraints or AIRs. These allow the +translation of raw data such as NMR chemical shift perturbation or mutagenesis experiments into distance +restraints that are incorporated into the energy function used in the calculations. AIRs are defined through +a list of residues that fall under two categories: active and passive. Generally, active residues are those +of central importance for the interaction, such as residues whose knockouts abolish the interaction or those +where the chemical shift perturbation is higher. Throughout the simulation, these active residues are +restrained to be part of the interface, if possible, otherwise incurring a scoring penalty. Passive residues +are those that contribute to the interaction but are deemed of less importance. If such a residue does +not belong in the interface there is no scoring penalty. Hence, a careful selection of which residues are +active and which are passive is critical for the success of the docking. + + +
+
+ +## A brief introduction to HADDOCK3 + +HADDOCK3 is the next generation integrative modelling software in the +long-lasting HADDOCK project. It represents a complete rethinking and rewriting +of the HADDOCK2.X series, implementing a new way to interact with HADDOCK and +offering new features to users who can now define custom workflows. + +In the previous HADDOCK2.x versions, users had access to a highly +parameterisable yet rigid simulation pipeline composed of three steps: +`rigid-body docking (it0)`, `semi-flexible refinement (it1)`, and `final refinement (itw)`. + +
+ +
+ +In HADDOCK3, users have the freedom to configure docking workflows into +functional pipelines by combining the different HADDOCK3 modules, thus +adapting the workflows to their projects. HADDOCK3 has therefore developed to +truthfully work like a puzzle of many pieces (simulation modules) that users can +combine freely. To this end, the “old” HADDOCK machinery has been modularized, +and several new modules added, including third-party software additions. As a +result, the modularization achieved in HADDOCK3 allows users to duplicate steps +within one workflow (e.g., to repeat twice the `it1` stage of the HADDOCK2.x +rigid workflow). + +Note that, for simplification purposes, at this time, not all functionalities of +HADDOCK2.x have been ported to HADDOCK3, which does not (yet) support NMR RDC, +PCS and diffusion anisotropy restraints, cryo-EM restraints and coarse-graining. +Any type of information that can be converted into ambiguous interaction +restraints can, however, be used in HADDOCK3, which also supports the +*ab initio* docking modes of HADDOCK. + +
+ +
+ +To keep HADDOCK3 modules organized, we catalogued them into several +categories. However, there are no constraints on piping modules of different +categories. + +The main module categories are "topology", "sampling", "refinement", +"scoring", and "analysis". There is no limit to how many modules can belong to a +category. Modules are added as developed, and new categories will be created +if/when needed. You can access the HADDOCK3 documentation page for the list of +all categories and modules. Below is a summary of the available modules: + +* **Topology modules** + * `topoaa`: *generates the all-atom topologies for the CNS engine.* +* **Sampling modules** + * `rigidbody`: *Rigid body energy minimization with CNS (`it0` in haddock2.x).* + * `lightdock`: *Third-party glow-worm swam optimization docking software.* +* **Model refinement modules** + * `flexref`: *Semi-flexible refinement using a simulated annealing protocol through molecular dynamics simulations in torsion angle space (`it1` in haddock2.x).* + * `emref`: *Refinement by energy minimisation (`itw` EM only in haddock2.4).* + * `mdref`: *Refinement by a short molecular dynamics simulation in explicit solvent (`itw` in haddock2.X).* +* **Scoring modules** + * `emscoring`: *scoring of a complex performing a short EM (builds the topology and all missing atoms).* + * `mdscoring`: *scoring of a complex performing a short MD in explicit solvent + EM (builds the topology and all missing atoms).* +* **Analysis modules** + * `alascan`: *Performs a systematic (or user-define) alanine scanning mutagenesis of interface residues.* + * `caprieval`: *Calculates CAPRI metrics (i-RMSD, l-RMSD, Fnat, DockQ) with respect to the top-scoring model or reference structure if provided.* + * `clustfcc`: *Clusters models based on the fraction of common contacts (FCC)* + * `clustrmsd`: *Clusters models based on pairwise RMSD matrix calculated with the `rmsdmatrix` module.* + * `contactmap`: *Generate contact matrices of both intra- and intermolecular contacts and a chordchart of intermolecular contacts.* + * `rmsdmatrix`: *Calculates the pairwise RMSD matrix between all the models generated in the previous step.* + * `ilrmsdmatrix`: *Calculates the pairwise interface-ligand-RMSD (il-RMSD) matrix between all the models generated in the previous step.* + * `seletop`: *Selects the top N models from the previous step.* + * `seletopclusts`: *Selects the top N clusters from the previous step.* + +The HADDOCK3 workflows are defined in simple configuration text files, similar to the TOML format but with extra features. +Contrary to HADDOCK2.X which follows a rigid (yet highly parameterisable) +procedure, in HADDOCK3, you can create your own simulation workflows by +combining a multitude of independent modules that perform specialized tasks. + + +
+
+ +## Software and data setup + +In order to follow this tutorial you will need to work on a Linux or MacOSX +system. We will also make use of [**PyMOL**](https://www.pymol.org/){:target="_blank"} (freely available for +most operating systems) in order to visualize the input and output data. We will +provide you links to download the various required software and data. + +Further, we are providing pre-processed PDB files for docking and analysis (but the +preprocessing of those files will also be explained in this tutorial). The files have been processed +to facilitate their use in HADDOCK and to allow comparison with the known reference +structure of the complex. + +If you are running this tutorial on your own resources _download and unzip the following_ +[zip archive](https://surfdrive.surf.nl/files/index.php/s/R7VHGQM9nx8QuQn){:target="_blank"} +_and note the location of the extracted PDB files in your system_. + +__If running as part of a BioExcel workshop or summerschool see the instructions in the next section.__ + +_Note_ that you can also download and unzip this archive directly from the Linux command line: + + +wget https://surfdrive.surf.nl/files/index.php/s/2RmROYLP4HcNZ1V/download -O HADDOCK3-protein-protein.zip
+unzip HADDOCK3-protein-protein.zip +
+ + +Unziping the file will create the `HADDOCK3-protein-protein` directory which should contain the following directories and files: + +* `pdbs`: a directory containing the pre-processed PDB files +* `restraints`: a directory containing the interface information and the corresponding restraint files for HADDOCK3 +* `runs`: a directory containing pre-calculated results +* `scripts`: a directory containing various scripts used in this tutorial +* `workflows`: a directory containing configuration file examples for HADDOCK3 + +In case of a workshop of course, HADDOCK3 will usually have been installed on the system you will be using. + +It this is not the case, you will have to install it yourself. To obtain and install HADDOCK3, navigate to [its repository][haddock-repo], fill the +registration form, and then follow the instructions under the **Local setup (on your own)** section below. + + +
+ +### Local setup (on your own) + +If you are installing HADDOCK3 on your own system, check the instructions and requirements below. + + +#### Installing HADDOCK3 + +To obtain HADDOCK3 navigate to [its repository][haddock-repo], fill the +registration form, and then follow the [installation instructions](https://www.bonvinlab.org/haddock3/INSTALL.html){:target="_blank"}. + +**_Note_** that depending on the system you are installing HADDOCK3 on, you might have to recompile CNS if the provided executable is not working. See the [CNS troubleshooting section](https://github.com/haddocking/haddock3/blob/main/DEVELOPMENT.md#troubleshooting-the-cns-executable){:target="_blank"} on the HADDOCK3 GitHub repository for instructions. + +#### Auxiliary software + +[**PyMOL**](https://www.pymol.org/){:target="_blank"}: In this tutorial we will make use of PyMOL for visualization. If not +already installed on your system, download and install [**PyMOL**](https://www.pymol.org/){:target="_blank"}. Note that you can use your favorite visulation software but instructions are only provided here for PyMOL. + + +
+
+ +## Preparing PDB files for docking + +In this section we will prepare the PDB files of the two proteins for docking. +Crystal and NMR structures are available from the [PDBe database](https://www.pdbe.org){:target="_blank"}. +Throughout this step, we will use `pdb-tools` from the command line. + +_**Note**_ that `pdb-tools` is also available as a [web service](https://wenmr.science.uu.nl/pdbtools/){:target="_blank"}. + +_**Note**_: Before starting to work on the tutorial, make sure to activate your haddock3 environment (how to do it depends on how you installed haddock3). + + +
+ +### Inspecting and preparing E2A for docking + +We will now inspect the E2A structure. For this start PyMOL and in the command line window of PyMOL (indicated by PyMOL>) type: + + +fetch 1F3G
+show cartoon
+hide lines
+show sticks, resn HIS
+
+ +You should see a backbone representation of the protein with only the histidine side-chains visible. +Try to locate the histidines in this structure. + +Is there any phosphate group present in this structure? + +Note that you can zoom on the histidines by typing in PyMOL: + +zoom resn HIS + +Revert to a full view with: + +zoom vis + +As a preparation step before docking, it is advised to remove any irrelevant water and other small molecules (e.g. small molecules from the crystallisation buffer), however do leave relevant co-factors if present. For E2A, the PDB file only contains water molecules. You can remove those in PyMOL by typing: + +remove resn HOH + +Now let us vizualize the residues affected by binding as identified by NMR. From [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"} the following residues of E2A were identified has having significant chemical shift perturbations: + +38,40,45,46,69,71,78,80,94,96,141 + +We will now switch to a surface representation of the molecule and highlight the NMR-defined interface. In PyMOL type the following commands: + + +color white, all
+show surface
+select e2a_active, (1F3G and resi 38,40,45,46,69,71,78,80,94,96,141)
+color red, e2a_active
+
+ +
+ +
+ +Inspect the surface. + +Do the identified residues form a well defined patch on the surface? +Do they form a contiguous surface? + +The answer to the last question should be no: We can observe residue in the center of the patch that do not seem significantly affected while still being in the middle of the defined interface. This is the reason why in HADDOCK we also define "*passive*" residues that correspond to surface neighbors of active residues. These can be selected manually, or more conveniently you can let the HADDOCK server do it for you (see [Setting up the docking run](#setting-up-the-docking-run) below). + +As final step save the molecule as a new PDB file which we will call: *e2a_1F3G.pdb*
+For this in the PyMOL menu on top select: + +File -> Export molecule... +Click on the save button +Select as ouptut format PDB (*.pdb *.pdb.gz) +Name your file *e2a_1F3G.pdb* and note its location + +After saving the molecule delete it from the Pymol window or close Pymol. You can remove the molecule by typing this into the command line window of PyMOL: + + +delete 1F3G + + +In a terminal, make sure that E2A chain is A. + + +pdb_chain -A e2a_1F3G.pdb | pdb_chainxseg > e2a_1F3G_clean.pdb + + +This will be usefull in the docking phase, as HADDOCK3 needs different chain associated to each protein involved in the docking. + +
+ +### Adding a phosphate group + +Since the biological function of this complex is to transfer a phosphate group from one protein to another, via histidines side-chains, it is relevant to make sure that a phosphate group be present for docking. As we have seen above none is currently present in the PDB files. HADDOCK does support a list of modified amino acids which you can find at the following link: [https://wenmr.science.uu.nl/haddock2.4/library](https://wenmr.science.uu.nl/haddock2.4/library){:target="_blank"}. + +Check the list of supported modified amino acids. +What is the proper residue name for a phospho-histidine in HADDOCK? + +In order to use a modified amino-acid in HADDOCK, the only thing you will need to do is to edit the PDB file and change the residue name of the amino-acid you want to modify. Don not bother deleting irrelevant atoms or adding missing ones, HADDOCK will take care of that. For E2A, the histidine that is phosphorylated has residue number 90. In order to change it to a phosphorylated histidine do the following: + +Edit the PDB file (*e2a_1F3G_clean.pdb*) in your favorite text editor +Change the name of histidine 90 to NEP +Save the file (as simple text file) under a new name, e.g. *e2aP_1F3G.pdb* + +Alternatively, this can also be done from the command line with the following command: + + +sed 's/HIS\ A\ 90/NEP\ A\ 90/g' e2a_1F3G_clean.pdb > e2aP_1F3G.pdb + + +**Note:** The same procedure can be used to introduce a mutation in an input protein structure. + + +
+ +### Inspecting and preparing HPR for docking + +We will now inspect the HPR structure. For this start PyMOL and in the command line window of PyMOL type: + + +fetch 1HDN
+show cartoon
+hide lines
+
+ +Since this is an NMR structure it does not contain any water molecules and we don't need to remove them. + +Let's vizualize the residues affected by binding as identified by NMR. From [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"} the following residues were identified has having significant chemical shift perturbations: + +15,16,17,20,48,49,51,52,54,56 + +We will now switch to a surface representation of the molecule and highlight the NMR-defined interface. In PyMOL type the following commands: + + +color white, all
+show surface
+select hpr_active, (1HDN and resi 15,16,17,20,48,49,51,52,54,56)
+color red, hpr_active
+
+ +Again, inspect the surface. + +Do the identified residues form a well defined patch on the surface? +Do they form a contiguous surface? + +Now since this is an NMR structure, it actually consists of an ensemble of models. HADDOCK can handle such ensemble, using each conformer in turn as starting point for the docking. We however recommend to limit the number of conformers used for docking, since the number of conformer combinations of the input molecules might explode (e.g. 10 conformers each will give 100 starting combinations and if we generate 1000 ridig body models (see [HADDOCK general concepts](#haddock-general-concepts) above) each combination will only be sampled 10 times). + +Now let's vizualise this NMR ensemble. In PyMOL type: + + +hide all
+show ribbon
+set all_states, on
+
+ +You should now be seing the 30 conformers present in this NMR structure. To illustrate the potential benefit of using an ensemble of conformations as starting point for docking let's look at the side-chains of the active residues: + + +show lines, hpr_active
+
+ +
+ +
+ +You should be able to see the amount of conformational space sampled by those surface side-chains. You can clearly see that some residues do sample a large variety of conformations, one of which might lead to much better docking results. + +**Note:** Pre-sampling of possible conformational changes can thus be beneficial for the docking, but again do limit the number of conformers used for the docking (or increase the number of sampled models, which is possible for users with expert- or guru-level access. The default access level is however only easy - for a higher level access do request it after registration). + +As final step, save the molecule as a new PDB file which we will call: *hpr-ensemble.pdb* +For this in the PyMOL menu select: + +File -> Export molecule... +Select as State 0 (all states) +Click on Save... +Select as ouptut format PDB (*.pdb *.pdb.gz) +Name your file *hpr-ensemble.pdb* and note its location + + +In a terminal, make sure that hpr chain is B. + + +pdb_chain -B hpr-ensemble.pdb | pdb_chainxseg > hpr-ensemble_clean.pdb + + +This will be usefull in the docking phase, as HADDOCK3 needs different chain associated to each protein involved in the docking. + + +
+
+ +## Defining restraints for docking + +Before setting up the docking, we first need to generate distance restraint files in a format suitable for HADDOCK. +HADDOCK uses [CNS][link-cns]{:target="_blank"} as computational engine. +A description of the format for the various restraint types supported by HADDOCK can be found in our [Nature Protocol 2024][nat-pro]{:target="_blank"} paper, Box 1. + +Distance restraints are defined as follows: + +
+assign (selection1) (selection2) distance, lower-bound correction, upper-bound correction
+
+ +The lower limit for the distance is calculated as: distance minus lower-bound correction +and the upper limit as: distance plus upper-bound correction. + +The syntax for the selections can combine information about: + +* chainID - `segid` keyword +* residue number - `resid` keyword +* atom name - `name` keyword. + +Other keywords can be used in various combinations of OR and AND statements. Please refer for that to the [online CNS manual][link-cns]{:target="_blank"}. + +E.g.: a distance restraint between the CB carbons of residues 10 and 200 in chains A and B with an +allowed distance range between 10Å and 20Å would be defined as follows: + +
+assign (segid A and resid 10 and name CB) (segid B and resid 200 and name CB) 20.0 10.0 0.0
+
+ + +Can you think of a different way of defining the distance and lower and upper corrections while maintaining the same +allowed range? + + + +
+ +### Defining active and passive residues for E2A + +As stated before, the following residues were identified has having significant chemical shift perturbations from [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"}: + +38,40,45,46,69,71,78,80,94,96,141 + +Hence, we are using these residues as `active` residues for the docking run. However, we have to define `passive` residues before the run. +These passive residues allows us to deal with potentially incomplete binding sites by defining surface neighbors as `passive` residues. +These are added to the definition of the interface but will not lead to any energetic penalty if they are not part of the +binding site in the final models, while the residues defined as `active` (typically the identified or predicted binding +site residues) will. When using the HADDOCK server, `passive` residues will be automatically defined. Here since we are +using a local version, we need to define those manually and create a file in which the active and passive residues will be listed. + +This can easily be done using a haddock3 command line tool in the following way: + + +echo "38 40 45 46 69 71 78 80 94 96 141" > e2a.act-pass +haddock3-restraints passive_from_active e2a_1F3G.pdb 38,40,45,46,69,71,78,80,94,96,141 >> e2a.act-pass + + +The NMR-identified residues and their surface neighbors generated with the above command can be used to define ambiguous interactions restraints, either using the NMR identified residues as active in HADDOCK, or combining those with the surface neighbors and use this combination as passive only. Here we decided to treat the NMR-identified residues as active residues. +Note the file consists of two lines, with the first one defining the `active` residues and +the second line the `passive` ones. We will use later these files to generate the ambiguous distance restraints for HADDOCK. + +In general it is better to be too generous rather than too strict in the +definition of passive residues. + +An important aspect is to filter both the active (the residues identified from +your mapping experiment) and passive residues by their solvent accessibility. +Our web service uses a default relative accessibility of 15% as cutoff. This is +not a hard limit. You might consider including even more buried residues if some +important chemical group seems solvent accessible from a visual inspection. + +
+ +### Defining active and passive residues for HPR + +As stated before, the following residues were identified has having significant chemical shift perturbations from [Wang *et al*, EMBO J (2000)](https://onlinelibrary.wiley.com/doi/10.1093/emboj/19.21.5635/abstract){:target="_blank"}: + +15,16,17,20,48,49,51,52,54,56 + +Using the same haddock3 command line tool: + + +echo "15 16 17 20 48 49 51 52 54 56" > hpr.act-pass +haddock3-restraints passive_from_active hpr-ensemble.pdb 15,16,17,20,48,49,51,52,54,56 >> hpr.act-pass + + +
+ +### Defining the ambiguous interaction restraints + +Once you have defined your active and passive residues for both molecules, you +can proceed with the generation of the ambiguous interaction restraints (AIR) file for HADDOCK. +For this you can either make use of our online [haddock-restraints](https://rascar.science.uu.nl/haddock-restraints) web service, entering the +list of active and passive residues for each molecule, and saving the resulting +restraint list to a text file, or use our haddock3 command line tool. + +To use our haddock3 command line tool you need to create for each molecule a file containing two lines: + +* The first line corresponds to the list of active residues (numbers separated by spaces) +* The second line corresponds to the list of passive residues. + +* For E2A (the file called `e2a.act-pass`): +
+38 40 45 46 69 71 78 80 94 96 141
+35 37 39 42 43 44 47 48 64 66 68 70 72 74 81 82 83 84 86 88 97 98 99 100 105 109 110 131 132 133 142 143 144 145
+
+ +* and for HPR (the file called `hpr.act-pass`): +
+15 16 17 20 48 49 51 52 54 56
+9 10 11 12 21 24 25 37 38 40 41 43 45 46 47 53 55 57 58 59 60 84 85
+
+ +Using those two files, we can generate the CNS-formatted AIR restraint files +with the following command: + + +haddock3-restraints active_passive_to_ambig restraints/e2a.act-pass restraints/hpr.act-pass \-\-segid-one A \-\-segid-two B > e2a-hpr_air.tbl + + +This generates a file called `ambig-prot-prot.tbl` that contains the AIR +restraints. The default distance range for those is between 0 and 2Å, which +might seem short but makes senses because of the 1/r^6 summation in the AIR +energy function that makes the effective distance be significantly shorter than +the shortest distance entering the sum. + +The effective distance is calculated as the SUM over all pairwise atom-atom +distance combinations between an active residue and all the active+passive on +the other molecule: SUM[1/r^6]^(-1/6). + +
+ +### Restraints validation + +If you modify manually this generated restraint files or create your own, it is possible to quickly check if the format is valid using the following `haddock3-restraints` sub-command: + + +haddock3-restraints validate_tbl e2a-hpr_air.tbl \-\-silent + + +No output means that your TBL file is valid. + +*__Note__* that this only validates the syntax of the restraint file, but does not check if the selections defined in the restraints are actually existing in your input PDB files. + + +
+
+ +## Setting up the docking with HADDOCK3 + +
+ +### HADDOCK3 workflow definition + +Now that we have all required files at hand (PBD and restraints files) it is time to setup our docking protocol. +For this we need to create a HADDOCK3 configuration file that will define the docking workflow. In contrast to HADDOCK2.X, +we have much more flexibility in doing this. We will illustrate this flexibility by introducing a clustering step +after the initial rigid-body docking stage, select up to 10 models per cluster and refine all of those. + +HADDOCK3 also provides an analysis module (`caprieval`) that allows +to compare models to either the best scoring model (if no reference is given) or a reference structure, which in our case +we have at hand. This will directly allow us to assess the performance of the protocol for the following two scenarios: + +1. **Scenario 1**: 1000 rigidbody docking models, selection of top200 and flexible refinement + EM +3. **Scenario 2**: 1000 rigidbody docking models, FCC clustering and selection of max 20 models per cluster followed by flexible refinement and EM + +The basic workflow for the first scenario consists of the following modules: + +1. **`topoaa`**: *Generates the topologies for the CNS engine and builds missing atoms* +2. **`rigidbody`**: *Performs rigid body energy minimisation (`it0` in haddock2.x)* +3. **`caprieval`**: *Calculates CAPRI metrics (i-RMSD, l-RMSD, Fnat, DockQ) with respect to the top scoring model or reference structure if provided* +4. **`seletop`** : *Selects the top X models from the previous module* +5. **`flexref`**: *Preforms semi-flexible refinement of the interface (`it1` in haddock2.4)* +6. **`caprieval`** +7. **`emref`**: *Final refinement by energy minimisation (`itw` EM only in haddock2.4)* +8. **`caprieval`** +9. **`clustfcc`**: *Clustering of models based on the fraction of common contacts (FCC)* +10. **`seletopclusts`**: *Selects the top models of all clusters* +11. **`caprieval`** Cluster-based CAPRI statistics +12. **`contactmap`**: *Contacts matrix and a chordchart of intermolecular contacts* + +In the second scenario a clustering step is introduced after rigid-body docking with the seletop module of scenario 1 (step4) replaced by: + +* **`clustfcc`**: *Clustering of models based on the fraction of common contacts (FCC)* +* **`seletopclusts`**: *Selection of the top10 models of all clusters* + +The input PDB and restraints files are the same for the two scenarios. + + +The corresponding toml configuration files are provided in the `workflows` directory. For scenario2 it looks like: + +{% highlight toml %} +# ==================================================================== +# Protein-protein docking example with NMR-derived ambiguous interaction restraints +# ==================================================================== + +# directory in which the scoring will be done +run_dir = "run2-full" + +# execution mode +mode = "local" +# maximum of 50 cores (limited by the number of available cores) +ncores = 50 + +# molecules to be docked +molecules = [ + "data/e2aP_1F3G.pdb", + "data/hpr-ensemble_clean.pdb" + ] + +# ==================================================================== +# Parameters for each stage are defined below, prefer full paths +# ==================================================================== + +[topoaa] +autohis = true + +[rigidbody] +tolerance = 5 +ambig_fname = "data/e2a-hpr_air.tbl" + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[clustfcc] + +[seletopclusts] + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[flexref] +tolerance = 5 +ambig_fname = "data/e2a-hpr_air.tbl" + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[emref] +tolerance = 5 +ambig_fname = "data/e2a-hpr_air.tbl" + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[clustfcc] + +[seletopclusts] + +[caprieval] +reference_fname = "data/e2a-hpr_1GGR.pdb" + +[contactmap] + +# ==================================================================== +{% endhighlight %} + + +**_Note_**: For making best use of the available CPU resources it is recommended to adapt the sampling parameter to be a multiple of the number of available cores when running in local mode. + +**_Note_**: In case no reference is available (the usual scenario), the best ranked model is used as reference for each stage. +Including `caprieval` at the various stages even when no reference is provided is useful to get the rankings and scores and visualise the results (see Analysis section below). + +**_Note_**: The default sampling would be 1000 models for `rigidbody` of which, for scenario1, 200 are passed to the flexible refinement in `seletop`. + +As an indication of the computational requirements, the default sampling worflow of scenario1 for this tutorial completes in about 37min using 12 cores on a MaxOSX M2 processor. + +**_Note_**: To get a list of all possible parameters that can be defined in a specific module (and their default values) you can use the following command: + + +haddock3-cfg -m \ + + +Add the `-d` option to get a more detailed description of parameters and use the `-h` option to see a list of arguments and options. + +Alternatively, you can consult the [developer's guide](https://www.bonvinlab.org/haddock3/){:target="_blank"}, where each parameter of each module is listed along with their default values, short and long descriptions, etc. Navigate to the [Modules](https://www.bonvinlab.org/haddock3/modules/index.html#){:target="_blank"} and select a module which parameters you want to display. + + +In the above workflow we see in three modules a *tolerance* parameter defined. Using the *haddock3-cfg* command try to figure out what this parameter does. + + + +
+ +### Running HADDOCK3 + +In in the first section of the workflow above we have a parameter `mode` defining the execution mode. HADDOCK3 currently supports three difference execution modes: + +- **local** : In this mode, HADDOCK3 will run on the current system, using the defined number of cores (`ncores`) in the config file to a maximum of the total number of available cores on the system. +- **batch**: In this mode, HADDOCK3 will typically be started on your local server (e.g. the login node) and will dispatch jobs to the batch system of your cluster (slurm and torque are currently supported). +- **mpi**: HADDOCK3 also supports a pseudo parallel MPI implementation, which allows to harvest the power of multiple nodes to distribute the computations (functional but still very experimental at this stage). + + +
+ +#### Learn more about the various execution modes of haddock3 + +
+ +
+ + Local execution expand_more + + +In this mode HADDOCK3 will run on the current system, using the defined number of cores (ncores) +in the config file to a maximum of the total number of available cores on the system minus one. +An example of the relevant parameters to be defined in the first section of the config file is: + +{% highlight toml %} +# compute mode +mode = "local" +# 1 nodes x 50 ncores +ncores = 50 +{% endhighlight %} + +In this mode HADDOCK3 can be started from the command line with as argument the configuration file of the defined workflow. + +{% highlight shell %} +haddock3 +{% endhighlight %} + +Alternatively redirect the output to a log file and send haddock3 to the background. + + +As an indication, running locally on an Apple M2 laptop using 10 cores, this workflow completed in 7 minutes. + + +{% highlight shell %} +haddock3 > haddock3.log & +{% endhighlight %} + +Note: This is also the execution mode that should be used for example when submitting the HADDOCK3 job to a node of a cluster, requesting X number of cores. + +
+ +
+ +
+ + Exection in batch mode using slurm expand_more + + + Here is an example script for submitting via the slurm batch system: + + {% highlight shell %} + #!/bin/bash + #SBATCH --nodes=1 + #SBATCH --tasks-per-node=50 + #SBATCH -J haddock3 + #SBATCH --partition=medium + + # activate the haddock3 conda environment + source $HOME/miniconda3/etc/profile.d/conda.sh + conda activate haddock3 + + # go to the run directory + cd $HOME/HADDOCK3-antibody-antigen + + # execute + haddock3 + {% endhighlight %} +
+ + + In this mode HADDOCK3 will typically be started on your local server (e.g. the login node) and will dispatch jobs to the batch system of your cluster. + Two batch systems are currently supported: slurm and torque (defined by the batch_type parameter). + In the configuration file you will have to define the queue name and the maximum number of concurrent jobs sent to the queue (queue_limit). + + Since HADDOCK3 single model calculations are quite fast, it is recommended to calculate multiple models within one job submitted to the batch system. + he number of model per job is defined by the concat parameter in the configuration file. + You want to avoid sending thousands of very short jobs to the batch system if you want to remain friend with your system administrators... + + An example of the relevant parameters to be defined in the first section of the config file is: + + {% highlight toml %} + # compute mode + mode = "batch" + # batch system + batch_type = "slurm" + # queue name + queue = "short" + # number of concurrent jobs to submit to the batch system + queue_limit = 100 + # number of models to produce per submitted job + concat = 10 + {% endhighlight %} + + In this mode HADDOCK3 can be started from the command line as for the local mode. +
+ +
+ +
+ + Exection in MPI mode expand_more + + + +HADDOCK3 supports a parallel pseudo-MPI implementation. For this to work, the mpi4py library must have been installed at installation time. +Refer to the (MPI-related instructions). + +The execution mode should be set to `mpi` and the total number of cores should match the requested resources when submitting to the batch system. + +An example of the relevant parameters to be defined in the first section of the config file is: + +{% highlight toml %} +# compute mode +mode = "mpi" +# 5 nodes x 50 tasks = ncores = 250 +ncores = 250 +{% endhighlight %} + +In this execution mode the HADDOCK3 job should be submitted to the batch system requesting the corresponding number of nodes and cores per node. + + + {% highlight shell %} + #!/bin/bash + #SBATCH --nodes=5 + #SBATCH --tasks-per-node=50 + #SBATCH -J haddock3mpi + + # Make sure haddock3 is activated + source $HOME/miniconda3/etc/profile.d/conda.sh + conda activate haddock3 + + # go to the run directory + # edit if needed to specify the correct location + cd $HOME/HADDOCK3-antibody-antigen + + # execute + haddock3 \ + {% endhighlight %} +
+
+ +
+ +
+ +### Scenario 1: 1000 rigidbody docking models, selection of top 200 and flexible refinement + EM + +Now that we have all data ready, and know about execution modes of HADDOCK3 it is time to setup the docking for the first scenario. The restraint file to use for this is `e2a-hpr_air.tbl`. We proceed to produce 1000 rigidbody docking models, from which 200 will be selected and refined through flexible refinement and energy minimization. For the analysis following the docking results, we are using the solved complex [1GGR](https://www.rcsb.org/structure/1GGR), named e2a-hpr_1GGR.pdb. + +The configuration file for this scenario is provided as `workflows/scenario1.cfg` + +If you have everything ready, you can launch haddock3 either from the command line, or, better, +submitting it to the batch system requesting in this local run mode a full node (see local execution mode above). +Instead of running the full sampling scenario, you can run a shorter version (sampling reduced to 100/20) (the full run results are anyway provided in the `runs` directory): + + +haddock3 workflows/scenario1-short.cfg + + +As an indication, running locally on an Apple M2 laptop using 12 cores, this workflow completed in less than 3 minutes, while the full runs takes about 21 minutes to complete. + +
+ +### Scenario 2: 1000 rigidbody docking models, FCC clustering and selection of max 20 models per cluster followed by flexible refinement and EM + +In scenario 2, we proceed to produce 1000 rigidbody docking models, from which we proceed to do a first clustering analysis. From the top10 models of each clusters a flexible refinement then energy minization is done. This scenario illustrates the new flexibility of HADDOCK3, adding a clustering step after rigid-body docking, which is not possible in the HADDOCK2.X version. + +The configuration file for this scenario is provided as `workflows/scenario2.cfg` + +If you have everything ready, you can launch haddock3 either from the command line, or, better, +submitting it to the batch system requesting in this local run mode a full node (see local execution mode above). +Instead of running the full sampling scenario, you can run a shorter version (sampling reduced to 100) (the full run results are anyway provided in the `runs` directory): + + +haddock3 workflows/scenario2-short.cfg + + +As an indication, running locally on an Apple M2 laptop using 10 cores, this workflow completed in less than 4 minutes. + + +
+
+ +## Analysis of docking results + + +### General structure of a run directory + +In case something went wrong with the docking (or simply if you do not want to wait for the results) you can find the following precalculated runs in the `runs` directory: +- `run1-full`: docking scenario1 +- `run1-short`: docking scenario1-short (limited sampling) +- `run2-full`: docking scenario2 +- `run2-short`: docking scenario2-short (limited sampling) + + +Once your run has completed inspect the content of the resulting directory. You will find the various steps (modules) of the defined workflow numbered sequentially, e.g. for scenario 2: + +{% highlight shell %} +> ls runs/run2-full/ + 00_topoaa/ + 01_rigidbody/ + 02_caprieval/ + 03_clustfcc/ + 04_seletopclusts/ + 05_caprieval/ + 06_flexref/ + 07_caprieval/ + 08_emref/ + 09_caprieval/ + 10_clustfcc/ + 11_seletopclusts/ + 12_caprieval/ + 13_contactmaps + analysis/ + data/ + log + traceback/ +{% endhighlight %} + +In addition, there is a log file (text file) and four additional directories: + +- the `analysis` directory contains various plots to visualize the results for each caprieval step and a general report (`report.html`) that provides all statistics with various plots. You can open this file in your preferred web browser +- the `data` directory contains the input data (PDB and restraint files) for the various modules, as well as an input workflow (in `configurations` directory) +- the `toppar` directory contains the force field topology and parameter files (only present when running in self-contained mode) +- the `traceback` directory contains `traceback.tsv`, which links all models to see which model originates from which throughout all steps of the workflow. + +You can find information about the duration of the run at the bottom of the log file. + +Each sampling/refinement/selection module will contain PDB files. +For example, the `09_seletopclusts` directory contains the selected models from each cluster. The clusters in that directory are numbered based +on their rank, i.e. `cluster_1` refers to the top-ranked cluster. Information about the origin of these files can be found in that directory in the `seletopclusts.txt` file. + +The simplest way to extract ranking information and the corresponding HADDOCK scores is to look at the `XX_caprieval` directories (which is why it is a good idea to have it as the final module, and possibly as intermediate steps). This directory will always contain a `capri_ss.tsv` single model statistics file, which contains the model names, rankings and statistics (score, iRMSD, Fnat, lRMSD, ilRMSD and dockq score). E.g. for `run1-short/11_caprieval`: + +
+model   md5     caprieval_rank  score   irmsd   fnat    lrmsd   ilrmsd  dockq   rmsd    cluster_id      cluster_ranking model-cluster_ranking   air     angles    bonds   bsa     cdih    coup    dani    desolv  dihe    elec    improper        rdcs    rg      sym     total   vdw     vean    xpcs
+../10_seletopclusts/cluster_1_model_1.pdb       -       1       -148.148        1.030   0.889   1.472   1.672   0.846   0.927   1       1       1       6.170     241.843 37.056  1702.360        0.000   0.000   0.000   -13.126 1283.440        -496.737        47.899  0.000   0.000   0.000   -526.858        -36.292   0.000   0.000
+../10_seletopclusts/cluster_1_model_2.pdb       -       2       -144.448        1.039   0.861   1.481   1.712   0.836   0.934   1       1       2       12.376    224.041 34.946  1659.740        0.000   0.000   0.000   -8.098  1291.960        -499.715        47.404  0.000   0.000   0.000   -524.983        -37.644   0.000   0.000
+../10_seletopclusts/cluster_1_model_3.pdb       -       3       -144.433        1.070   0.861   1.505   1.761   0.831   0.959   1       1       3       12.586    234.166 37.464  1647.550        0.000   0.000   0.000   -10.129 1295.290        -514.186        49.351  0.000   0.000   0.000   -534.325        -32.725   0.000   0.000
+../10_seletopclusts/cluster_1_model_4.pdb       -       4       -144.132        0.929   0.889   1.442   1.437   0.861   0.862   1       1       4       11.926    240.560 37.771  1564.810        0.000   0.000   0.000   -17.454 1294.750        -427.513        50.907  0.000   0.000   0.000   -457.955        -42.368   0.000   0.000
+...
+
+ +If clustering was performed prior to calling the `caprieval` module, the `capri_ss.tsv` file will also contain information about to which cluster the model belongs to and its ranking within the cluster. + +The relevant statistics are: + +* **score**: *the HADDOCK score (arbitrary units)* +* **irmsd**: *the interface RMSD, calculated over the interfaces the molecules* +* **fnat**: *the fraction of native contacts* +* **lrmsd**: *the ligand RMSD, calculated on the ligand after fitting on the receptor (1st component)* +* **ilrmsd**: *the interface-ligand RMSD, calculated over the interface of the ligand after fitting on the interface of the receptor (more relevant for small ligands for example)* +* **dockq**: *the DockQ score, which is a combination of irmsd, lrmsd and fnat and provides a continuous scale between 1 (exactly equal to reference) and 0* + +Various other terms are also reported including: + +* **bsa**: *the buried surface area (in squared angstroms)* +* **elec**: *the intermolecular electrostatic energy* +* **vdw**: *the intermolecular van der Waals energy* +* **desolv**: *the desolvation energy* + + +The iRMSD, lRMSD and Fnat metrics are the ones used in the blind protein-protein prediction experiment [CAPRI](https://capri.ebi.ac.uk/){:target="_blank"} (Critical PRediction of Interactions). + +In CAPRI the quality of a model is defined as (for protein-protein complexes): + +* **acceptable model**: i-RMSD < 4Å or l-RMSD < 10Å and Fnat > 0.1 (0.23 < DOCKQ < 0.49) +* **medium quality model**: i-RMSD < 2Å or l-RMSD < 5Å and Fnat > 0.3 (0.49 < DOCKQ < 0.8) +* **high quality model**: i-RMSD < 1Å or l-RMSD < 1Å and Fnat > 0.5 (DOCKQ > 0.8) + + +Based on these CAPRI criteria, what is the quality of the best model listed above (_cluster_1_model_1.pdb_)? + + +In case where the `caprieval` module is called after a clustering step, an additional `capri_clt.tsv` file will be present in the directory. +This file contains the cluster ranking and score statistics, averaged over the minimum number of models defined for clustering +(4 by default), with their corresponding standard deviations. E.g.: + +
+cluster_rank    cluster_id      n       under_eval      score   score_std       irmsd   irmsd_std       fnat    fnat_std        lrmsd   lrmsd_std         dockq   dockq_std       ilrmsd  ilrmsd_std      rmsd    rmsd_std        air     air_std bsa     bsa_std desolv  desolv_std      elec    elec_std  total   total_std       vdw     vdw_std caprieval_rank
+1       1       10      -       -145.291        1.655   1.017   0.053   0.875   0.014   1.475   0.022   0.844   0.012   1.646   0.125   0.920   0.036   10.765    2.663   1643.615        49.842  -12.202 3.521   -484.538        33.578  -511.030        30.842  -37.257 3.455   1
+2       2       10      -       -104.588        5.104   7.967   0.362   0.125   0.069   15.246  0.938   0.133   0.031   14.405  0.552   8.271   0.392   38.880    9.265   1401.525        77.410  -14.119 0.968   -339.316        28.112  -326.929        17.229  -26.494 8.879   2
+3       3       6       -       -88.298 4.646   3.016   0.265   0.326   0.030   8.303   1.830   0.350   0.052   7.289   0.855   2.997   0.436   28.868  21.272    1240.365        112.271 -16.524 4.943   -270.877        44.513  -262.493        33.887  -20.485 2.141   3
+
+ + +In this file you find the cluster rank (which corresponds to the naming of the clusters in the previous `seletop` directory), the cluster ID (which is related to the size of the cluster, 1 being always the largest cluster), the number of models (n) in the cluster and the corresponding statistics (averages + standard deviations). The corresponding cluster PDB files will be found in the preceeding `09_seletopclusts` directory. + +While these simple text files can be easily checked from the command line already, they might be cumbersome to read. +For that reason, we have developed a post-processing analysis that automatically generates html reports for all `caprieval` steps in the workflow. +These are located in the respective `analysis/XX_caprieval` directories and can be viewed using your favorite web browser. + + +
+ +### Analysis scenario 1: + +Let us now analyze the docking results for this scenario. Use for that either your own run or a pre-calculated run provided in the `runs` directory. + + + +
+ +#### Cluster statistics + +First of all let us check the final cluster statistics using the full run results from `runs/run1-full`. + +Go into the `analysis/10_caprieval_analysis` directory of the respective run directory (if needed copy the run or that directory to your local computer) and open in a web browser the `report.html` file. Be patient as this page contains interactive plots that may take some time to generate. + +You can also view this report online [here](plots/scenario1/report.html){:target="_blank"} + + +On the top of the page, you will see a table that summarises the cluster statistics (taken from the `capri_clt.tsv` file). +The columns (corresponding to the various clusters) are sorted by default on the cluster rank, which is based on the HADDOCK score (found on the 4th row of the table). +As this is an interactive table, you can sort it as you wish by using the arrows present in the first column. +Simply click on the arrows of the term you want to use to sort the table (and you can sort it in ascending or descending order). +A snapshot of this table is shown below: + +*__Note__* that in case the PDB files are still compressed (gzipped) the download links will not work. Also online visualisation is not enabled. + + +Inspect the final cluster statistics + +How many clusters have been generated? + +Look at the score of the first few clusters: Are they significantly different if you consider their average scores and standard deviations? + +Since for this tutorial we have at hand the crystal structure of the complex, we provided it as reference to the `caprieval` modules. +This means that the iRMSD, lRMSD, Fnat and DockQ statistics report on the quality of the docked model compared to the reference crystal structure. + +How many clusters of acceptable or better quality have been generate according to CAPRI criteria? + +What is the rank of the best cluster generated? + +What is the rank of the first acceptable of better cluster generated? + + +We are also providing in the `scripts` directory a simple script that extract some cluster statistics for acceptable or better clusters from the `caprieval` steps. +To use is simply call the script with as argument the run directory you want to analyze, e.g.: + + + ./scripts/extract-capri-stats-clt.sh ./runs/run1-full + + +
+ + View the output of the script expand_more + +
+==============================================
+== run1-full//02_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  0  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:   i-RMSD:   Fnat:   DockQ:
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  5.163  Fnat:  0.292  DockQ:  0.339
+==============================================
+== run1-full//04_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  0  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:   i-RMSD:   Fnat:   DockQ:
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  5.970  Fnat:  0.174  DockQ:  0.222
+==============================================
+== run1-full//06_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  0  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:   i-RMSD:   Fnat:   DockQ:
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  5.846  Fnat:  0.174  DockQ:  0.223
+==============================================
+== run1-full//08_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  0  out of  1
+Total number of medium or better clusters:      0  out of  1
+Total number of high quality clusters:          0  out of  1
+
+First acceptable cluster - rank:   i-RMSD:   Fnat:   DockQ:
+First medium cluster     - rank:   i-RMSD:   Fnat:   DockQ:
+Best cluster             - rank:  -  i-RMSD:  5.814  Fnat:  0.201  DockQ:  0.231
+==============================================
+== run1-full//11_caprieval/capri_clt.tsv
+==============================================
+Total number of acceptable or better clusters:  2  out of  3
+Total number of medium or better clusters:      1  out of  3
+Total number of high quality clusters:          0  out of  3
+
+First acceptable cluster - rank:  1  i-RMSD:  1.017  Fnat:  0.875  DockQ:  0.844
+First medium cluster     - rank:  1  i-RMSD:  1.017  Fnat:  0.875  DockQ:  0.844
+Best cluster             - rank:  1  i-RMSD:  1.017  Fnat:  0.875  DockQ:  0.844
+
+
+ +
+ +
+ +#### Visualizing the scores and their components + + +Next to the cluster statistic table shown above, the `report.html` file also contains a variety of plots displaying the HADDOCK score +and its components against various CAPRI metrics (i-RMSD, l-RMSD, Fnat, Dock-Q) with a color-coded representation of the clusters. +These are interactive plots. A menu on the top right of the first row (you might have to scroll to the rigth to see it) +allows you to zoom in and out in the plots and turn on and off clusters. + +As a reminder, you can view this report online [**here**](plots/scenario1/report.html){:target="_blank"} + + +Examine the plots (remember here that higher DockQ values and lower i-RMSD values correspond to better models) + + +For this antibody-antigen case, which of the score components correlates best with the quality of the models? + + +Finally, the report also shows at the bottom of the page plots of the cluster statistics (distributions of values per cluster ordered according to their HADDOCK rank). + +
+ +#### Some single structure analysis + + +Single structure statistics can also be visualised in an html report if you would open a file from a caprieval step prior to clustering (e.g. `08_caprieval` after the final energy minimisation). + +Some simple statistics can be extracted from the single model `caprieval` `capri_ss.tsv` files with the `extract-capri-stats.sh` script: + + + + ./scripts/extract-capri-stats.sh ./runs/run1-full + + +
+ +View the output of the script: expand_more + +
+==============================================
+== run1-full//02_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  401  out of  1000
+Total number of medium or better models:      221  out of  1000
+Total number of high quality models:          0  out of  1000
+
+First acceptable model - rank:  1  i-RMSD:  2.788  Fnat:  0.306  DockQ:  0.385
+First medium model     - rank:  7  i-RMSD:  1.148  Fnat:  0.556  DockQ:  0.711
+Best model             - rank:  9  i-RMSD:  1.145  Fnat:  0.556  DockQ:  0.713
+==============================================
+== run1-full//04_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  159  out of  200
+Total number of medium or better models:      155  out of  200
+Total number of high quality models:          0  out of  200
+
+First acceptable model - rank:  1  i-RMSD:  2.788  Fnat:  0.306  DockQ:  0.385
+First medium model     - rank:  7  i-RMSD:  1.148  Fnat:  0.556  DockQ:  0.711
+Best model             - rank:  9  i-RMSD:  1.145  Fnat:  0.556  DockQ:  0.713
+==============================================
+== run1-full//06_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  161  out of  200
+Total number of medium or better models:      141  out of  200
+Total number of high quality models:          41  out of  200
+
+First acceptable model - rank:  1  i-RMSD:  1.034  Fnat:  0.833  DockQ:  0.827
+First medium model     - rank:  1  i-RMSD:  1.034  Fnat:  0.833  DockQ:  0.827
+Best model             - rank:  62  i-RMSD:  0.885  Fnat:  0.806  DockQ:  0.841
+==============================================
+== run1-full//08_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  161  out of  200
+Total number of medium or better models:      141  out of  200
+Total number of high quality models:          49  out of  200
+
+First acceptable model - rank:  1  i-RMSD:  1.030  Fnat:  0.889  DockQ:  0.846
+First medium model     - rank:  1  i-RMSD:  1.030  Fnat:  0.889  DockQ:  0.846
+Best model             - rank:  91  i-RMSD:  0.846  Fnat:  0.806  DockQ:  0.843
+==============================================
+== run1-full//11_caprieval/capri_ss.tsv
+==============================================
+Total number of acceptable or better models:  16  out of  26
+Total number of medium or better models:      10  out of  26
+Total number of high quality models:          5  out of  26
+
+First acceptable model - rank:  1  i-RMSD:  1.030  Fnat:  0.889  DockQ:  0.846
+First medium model     - rank:  1  i-RMSD:  1.030  Fnat:  0.889  DockQ:  0.846
+Best model             - rank:  10  i-RMSD:  0.922  Fnat:  0.833  DockQ:  0.841
+
+
+ +
+ +_**Note**_ that this kind of analysis only makes sense when we know the reference complex and for benchmarking / performance analysis purposes. + +Look at the single structure statistics provided by the script + +How does the quality of the model changes after flexible refinement? Consider here the various metrics. + +
+ + Answer expand_more + +

+ In terms of iRMSD values we only observe very small differences in the best models, but the change in ranking is impressive! + The fraction of native contacts and the DockQ scores are however improving much more after flexible refinement. + All this will of course depend on how different are the bound and unbound conformations and the amount of data + used to drive the docking process. In general, from our experience, the more and better data at hand, + the larger the conformational changes that can be induced. +

+
+ +
+ +Is the best model always rank as first? + +
+ + Answer expand_more + +

+ This is clearly not the case. The scoring function is not perfect, but does a reasonable job in ranking models of acceptable or better quality on top in this case. +

+
+ + +
+ +#### Contacts analysis + +The contactmap analysis module of HADDOCK3 generates for each cluster both a contact matrix of the entire system showing all contacts within a 4.5Å cutoff and a chord chart representation of intermolecular contacts. + +In the current workflow we run, those files can be found in the `12_contactmap` directory. +These are again html files with interactive plots (hover with your mouse over the plots). + + +Open in your favorite web browser the _cluster1_rank1_chordchart.html_ file to analyse the intermolecular contacts of the best-ranked cluster. + + +This file taken from the pre-computed run can also directly be visualized [**here**](cluster1_rank1_chordchart.html){:target="_blank"} + + +Can you identify which residue(s) make(s) the most intermolecular contacts? + + + +
+ +### Analysis scenario 2: + +Let us now analyse the docking results for this scenario, which implements a clustering step after the rigid-body docking stage. +Use for that either your own run or a pre-calculated run provided in the `runs` directory. + +Look at the log file from the run (e.g. _runs/run2-full/log_) + +How many clusters were generated after the rigid-body docking stage? + +And in how many models this translated for the flexible refinement? + +Considering that the default settings will select a max of 10 models per cluster, how can you explain that the number of models for flexible refinement might be less than 10 times the number of clusters? + + +Open the `report.html` file found in _analysis/12_caprieval_ (or simply visualize the precalcuted one [**here**](plots/scenario2/report.html){:target="_blank"} + +Or go into the _analysis/_caprieval_analysis_ directory of the respective run directory and inspect the final cluster statistics in _capri_clt.tsv_ file + +View the final cluster statistics in _capri_clt.tsv_ file + +
+ +View the pre-calculated _caprieval/capri_clt.tsv file expand_more + +
+cluster_rank    cluster_id      n       under_eval      score   score_std       irmsdirmsd_std        fnat    fnat_std        lrmsd   lrmsd_std       dockq   dockq_std    ilrmsd   ilrmsd_std      air     air_std bsa     bsa_std desolv  desolv_std      elec elec_std total   total_std       vdw     vdw_std caprieval_rank
+1       5       10      -       -125.359        4.388   3.086   1.251   0.444   0.243   5.081   1.934   0.486   0.210   5.430   2.196   2.786   1.069        32.048  22.948  1571.068        28.129  -9.514  3.821   -425.572        37.053  -427.459        35.932  -33.935 6.140   1
+2       1       10      -       -123.194        8.135   0.981   0.044   0.806   0.028   2.184   0.304   0.814   0.015   1.778   0.162   1.033   0.049        13.946  5.260   1512.048        55.324  -14.070 3.982   -355.866        74.954  -381.265        63.589  -39.345 8.147   2
+3       12      9       -       -113.938        3.437   10.571  0.039   0.062   0.012   18.283  0.177   0.087   0.005   17.648  0.108   10.195  0.028        24.749  14.446  1764.635        32.066  -8.174  2.757   -314.484        11.793  -335.077        7.399   -45.342 4.611   3
+4       8       10      -       -110.012        6.398   6.667   1.272   0.215   0.041   12.111  2.232   0.204   0.051   11.792  2.259   6.712   1.253        45.220  27.328  1549.892        64.533  -5.661  5.224   -390.860        30.329  -376.341        47.099  -30.701 4.458   4
+5       4       10      -       -108.676        5.869   10.499  0.129   0.069   0.014   17.298  0.172   0.095   0.005   17.197  0.207   10.293  0.108        11.946  15.401  1544.793        64.698  -2.523  4.998   -384.582        44.071  -403.067        53.117  -30.431 7.890   5
+6       21      4       -       -102.620        23.209  1.649   0.524   0.681   0.140   4.128   1.761   0.654   0.140   3.513   1.386   1.672   0.562        31.928  23.111  1357.930        147.749 -12.666 4.195   -341.057        43.613  -334.063        74.936  -24.935 8.479   6
+7       2       10      -       -102.124        1.874   8.709   0.505   0.076   0.053   16.364  0.337   0.106   0.019   15.418  0.657   9.065   0.469        33.207  17.921  1329.695        79.441  -12.247 1.007   -369.341        21.900  -355.464        12.401  -19.329 3.840   7
+8       10      10      -       -101.907        3.082   9.371   0.165   0.090   0.012   15.797  0.261   0.113   0.003   16.570  0.220   8.647   0.174        8.097   3.210   1415.988        35.893  -6.841  0.611   -271.088        11.440  -304.651        11.812  -41.658 2.132   8
+9       18      5       -       -98.092 5.846   10.738  0.030   0.132   0.023   19.525  0.698   0.104   0.006   17.449  0.101   11.122  0.149   34.083       3.478   1377.390        64.030  -20.159 2.582   -235.614        29.112  -235.750        29.647  -34.219 2.454   9
+10      7       10      -       -94.360 4.046   10.858  0.034   0.111   0.028   18.439  0.384   0.102   0.011   17.808  0.240   10.684  0.070   43.394       27.139  1505.900        65.731  -15.427 1.135   -224.854        44.571  -219.762        48.090  -38.302 5.864   10
+11      17      5       -       -93.344 2.375   9.295   0.130   0.069   0.014   15.673  0.269   0.107   0.006   15.506  0.175   8.965   0.082   48.231       24.425  1500.330        86.456  -10.426 4.687   -267.404        39.376  -253.434        32.297  -34.260 2.445   11
+12      3       10      -       -93.174 2.214   7.066   0.716   0.083   0.056   12.460  1.736   0.151   0.006   13.150  1.720   6.607   0.728   41.548       22.209  1181.820        27.395  -11.433 2.031   -322.491        35.935  -302.340        40.530  -21.397 7.920   12
+13      14      8       -       -92.717 9.474   4.740   0.956   0.278   0.115   15.360  3.199   0.211   0.085   11.538  2.537   5.285   0.978   14.441       21.804  1351.725        138.474 -2.305  4.295   -313.494        33.803  -328.210        52.151  -29.157 5.413   13
+14      9       10      -       -92.512 2.704   6.006   0.705   0.132   0.030   13.310  1.341   0.162   0.028   11.059  1.234   6.347   0.699   36.390       4.506   1515.135        68.122  -4.445  4.691   -294.152        45.932  -290.638        45.787  -32.876 4.149   14
+15      20      4       -       -87.091 14.312  6.080   0.056   0.007   0.012   9.910   0.394   0.163   0.008   12.295  0.666   5.170   0.228   36.574       21.213  1280.060        227.092 3.292   3.601   -354.703        42.910  -341.228        50.728  -23.100 7.777   15
+16      19      4       -       -82.561 4.737   10.471  0.203   0.076   0.012   17.850  0.115   0.094   0.004   17.887  0.456   10.255  0.108   57.751       22.350  1456.233        47.296  2.020   3.524   -300.527        60.550  -273.027        45.767  -30.251 8.039   16
+17      6       10      -       -78.096 1.276   8.664   0.310   0.097   0.031   14.559  0.423   0.127   0.013   15.264  0.157   8.073   0.465   25.747       19.256  1281.750        84.282  -2.103  3.681   -294.634        35.352  -288.529        15.213  -19.642 7.157   17
+18      16      5       -       -77.001 14.086  10.444  0.226   0.083   0.020   18.519  1.216   0.093   0.005   17.777  0.581   9.910   0.296   56.060       14.408  1337.155        124.229 -1.707  3.567   -288.270        51.526  -255.455        68.193  -23.245 6.011   18
+19      11      9       -       -71.077 9.704   4.883   0.281   0.125   0.057   10.033  0.449   0.210   0.026   8.851   0.651   4.978   0.290   71.689       25.649  1418.830        120.651 1.831   1.470   -235.329        27.016  -196.651        39.597  -33.011 7.464   19
+20      15      6       -       -66.760 4.851   5.334   0.168   0.076   0.030   15.837  0.577   0.125   0.011   13.994  0.395   4.917   0.222   60.002       23.499  1302.927        47.402  -13.791 2.317   -179.987        19.337  -142.957        17.357  -22.972 7.125   20
+21      13      8       -       -61.744 6.369   12.082  0.275   0.042   0.014   27.742  2.419   0.048   0.009   23.755  1.443   11.710  0.370   23.892       12.304  988.051 54.474  -1.164  4.633   -215.609        32.195  -211.565        22.347  -19.847 5.152   21
+
+
+
+ +How many clusters of acceptable or better quality have been generate according to CAPRI criteria? + +What is the rank of the best cluster generated? + +What is the rank of the first acceptable of better cluster generated? + +How different are the results from scenari1 above? + + + +In this run we also had a `caprieval` after the clustering of the rigid body models (step 5 of our workflow). + +Inspect the corresponding _capri_clt.tsv_ file + +
+ +View the pre-calculated 5_caprieval/capri_clt.tsv file expand_more + +
+cluster_rank    cluster_id      n       under_eval      score   score_std       irmsdirmsd_std        fnat    fnat_std        lrmsd   lrmsd_std       dockq   dockq_std    ilrmsd   ilrmsd_std      air     air_std bsa     bsa_std desolv  desolv_std      elec elec_std total   total_std       vdw     vdw_std caprieval_rank
+1       1       10      -       -32.085 0.532   1.569   0.704   0.493   0.108   3.261   1.920   0.626   0.139   3.239   1.899   1.371   0.630   163.741      5.130   1096.804        147.437 -15.091 1.814   -7.653  0.184   155.025 5.201   -1.064  3.432   1
+2       4       10      -       -31.438 0.483   8.377   0.016   0.056   0.000   16.257  0.209   0.100   0.001   15.092  0.021   8.601   0.060   148.614      20.136  1083.170        10.831  -15.943 0.478   -6.143  0.052   141.809 21.538  -0.662  2.474   2
+3       15      10      -       -30.142 2.812   8.789   0.367   0.056   0.000   17.178  0.424   0.094   0.003   15.609  0.429   9.206   0.377   85.840       24.724  977.613 55.919  -15.288 2.084   -5.892  1.039   75.478  26.318  -4.470  2.895   3
+4       6       10      -       -29.262 0.574   6.284   0.094   0.056   0.000   10.770  0.167   0.164   0.003   11.372  0.164   5.926   0.099   204.351      42.538  895.455 34.659  -13.781 0.500   -8.598  0.913   198.583 48.041  2.830   6.676   4
+5       12      10      -       -28.715 1.503   2.121   0.390   0.396   0.084   5.727   1.699   0.478   0.091   4.797   1.005   2.105   0.526   137.121      57.651  968.825 11.297  -12.596 1.112   -7.751  1.194   124.217 59.616  -5.153  4.592   5
+6       23      5       -       -28.004 4.467   4.628   0.458   0.229   0.063   8.403   0.719   0.278   0.041   8.665   0.518   4.529   0.513   161.866      85.923  1107.378        53.522  -13.362 3.274   -5.086  0.903   146.704 96.226  -10.075 9.473   6
+7       21      5       -       -27.112 0.545   10.707  0.023   0.125   0.014   19.763  0.277   0.100   0.005   17.409  0.037   11.161  0.069   146.469      20.528  1176.923        25.825  -14.032 0.326   -2.641  0.265   130.375 24.933  -13.453 4.243   7
+8       2       10      -       -26.081 0.401   4.104   0.017   0.132   0.012   6.997   0.014   0.282   0.004   7.414   0.031   3.802   0.013   203.010      53.514  1010.929        13.658  -10.151 0.339   -7.781  0.182   188.218 54.768  -7.012  1.821   8
+9       8       10      -       -24.831 1.483   10.609  0.066   0.049   0.012   18.508  0.445   0.081   0.006   17.736  0.217   10.229  0.081   101.918      63.948  1468.570        21.634  -8.022  0.931   -2.902  0.631   74.945  67.905  -24.071 5.641   9
+10      14      10      -       -24.399 0.904   3.597   0.265   0.194   0.028   10.974  1.100   0.241   0.031   9.028   1.060   3.504   0.179   172.370      55.524  1158.146        121.901 -8.674  1.642   -5.801  1.277   159.977 66.010  -6.592  13.112  10
+11      29      4       -       -24.070 1.736   8.664   0.807   0.042   0.014   18.290  1.080   0.083   0.012   15.566  1.230   9.000   0.716   448.512      126.983 988.570 106.410 -15.921 1.758   -2.762  0.407   447.092 130.529 1.341   9.436   11
+12      3       10      -       -23.463 0.229   9.482   0.023   0.042   0.014   16.322  0.193   0.093   0.006   16.966  0.097   8.758   0.032   81.551       31.696  1141.702        19.289  -6.834  0.710   -5.973  0.141   70.159  34.564  -5.420  3.678   12
+13      13      10      -       -23.357 1.305   7.302   0.161   0.139   0.020   12.910  0.299   0.161   0.007   13.105  0.169   7.214   0.205   268.147      121.404 1077.705        35.823  -5.623  0.736   -9.544  0.692   249.265 124.014 -9.337  5.642   13
+14      20      5       -       -22.594 1.264   7.723   0.244   0.118   0.023   13.916  0.288   0.142   0.010   14.340  0.222   7.376   0.276   432.674      31.549  989.278 44.144  -9.032  1.016   -7.950  1.887   420.099 29.336  -4.625  4.581   14
+15      18      10      -       -22.191 0.304   2.210   0.013   0.389   0.000   5.406   0.090   0.472   0.003   4.211   0.040   2.239   0.015   216.113      76.283  1131.940        15.150  -9.207  0.756   -3.663  0.095   196.226 79.057  -16.224 2.900   15
+16      19      8       -       -21.866 0.498   10.867  0.021   0.090   0.012   18.900  0.121   0.092   0.005   18.103  0.072   10.696  0.013   163.911      67.272  1237.880        14.530  -10.461 0.439   -0.507  0.298   147.611 70.977  -15.793 5.107   16
+17      17      10      -       -21.465 0.810   10.809  0.003   0.104   0.012   17.715  0.028   0.103   0.004   17.457  0.009   10.547  0.005   316.134      69.551  1366.262        24.712  -8.579  0.766   -2.305  0.238   305.960 72.442  -7.869  3.101   17
+18      10      10      -       -21.031 0.307   5.682   0.108   0.083   0.083   17.768  1.211   0.112   0.020   14.388  0.256   5.741   0.641   148.855      92.373  1134.628        103.961 -5.281  3.162   -5.798  1.240   133.714 104.088 -9.343  10.550  18
+19      7       10      -       -20.282 0.894   9.722   0.476   0.062   0.012   17.085  0.299   0.095   0.004   16.129  0.681   9.743   0.390   381.512      124.204 980.973 112.048 -6.725  1.139   -7.554  1.319   373.060 129.037 -0.898  6.137   19
+20      24      5       -       -20.203 5.838   10.712  0.035   0.076   0.012   17.941  0.233   0.093   0.005   18.116  0.568   10.510  0.225   276.084      112.917 1081.205        117.863 -8.239  5.353   -3.851  1.334   266.101 114.799 -6.132  2.624   20
+21      25      5       -       -17.992 4.221   9.166   0.204   0.056   0.000   15.726  0.889   0.103   0.007   15.404  0.312   8.899   0.282   318.210      136.576 1167.855        99.445  -6.764  3.757   -2.752  0.201   317.481 138.114 2.022   3.315   21
+22      11      10      -       -14.627 2.778   11.930  0.214   0.035   0.012   26.403  0.784   0.048   0.006   22.691  0.873   11.695  0.143   108.4
+65      73.961  883.253 62.138  -1.452  4.869   -5.347  2.179   95.114  84.827  -8.003  8.865   22
+23      28      4       -       -13.956 1.434   9.248   0.062   0.069   0.014   15.172  0.121   0.111   0.006   15.871  0.037   8.812   0.087   333.032      163.288 900.703 18.410  -0.566  0.668   -7.739  0.067   327.877 173.691 2.584   10.899  23
+24      5       10      -       -13.809 0.940   5.941   0.121   0.083   0.000   13.604  0.335   0.141   0.004   11.115  0.156   6.271   0.156   181.681      73.025  1115.750        29.267  0.965   2.118   -5.370  2.346   169.975 73.043  -6.336  1.947   24
+25      22      5       -       -12.560 1.188   10.407  0.126   0.083   0.000   18.541  0.854   0.093   0.004   17.759  0.339   9.907   0.197   251.455      15.438  1063.331        79.801  -2.378  0.427   -2.031  0.309   246.143 17.820  -3.281  3.034   25
+26      26      4       -       -11.288 1.665   6.107   0.030   0.000   0.000   9.984   0.158   0.159   0.003   12.762  0.154   4.959   0.028   285.194      179.389 981.991 27.029  2.056   0.255   -6.272  0.330   268.549 186.322 -10.373 7.384   26
+27      16      10      -       -10.737 1.179   5.226   0.141   0.069   0.057   9.703   0.339   0.193   0.026   9.735   0.288   4.973   0.112   215.948      101.338 1188.425        107.307 4.567   1.022   -5.409  0.184   193.521 103.680 -17.019 3.000   27
+28      9       10      -       -10.587 0.423   8.494   0.025   0.056   0.000   14.509  0.082   0.114   0.001   15.302  0.056   7.869   0.027   226.991      58.991  1067.017        22.014  4.837   0.263   -6.980  0.109   215.655 60.210  -4.356  1.585   28
+29      27      4       -       -6.631  1.611   10.456  0.170   0.069   0.014   17.544  0.127   0.093   0.004   17.767  0.300   10.166  0.093   341.261      67.134  1170.100        84.016  7.085   2.274   -5.380  1.321   331.044 71.652  -4.837  6.069   29
+
+
+
+ +How many clusters are generated? + +Is this the same number that after refinement (see above)? + +If not what could be the reason? + +Consider again the rank of the first acceptable cluster based on iRMSD values. How does this compare with the refined clusters (see above)? + +
+ + Answer expand_more + +

+ After rigid body docking the first acceptable cluster is at rank 3 and the same is true after refinement, but the iRMSD values have improved. +

+
+ + +
+
+ +## Visualisation of the models + + +We will now visualise the generated models. For this go for example to `runs/run1-full/10_seletopclusts/`. This directory contains the top10 models of each cluster. +For visualisation we can load in PyMol the best model of each cluseter (the ones ending with `_1.pdb`). By default the PDB files will be gzipped. +PyMol should be able to directly read those. +In order to compare the various clusters we will however download the models and inspect them using PyMol. + + +Then start PyMOL and load each cluster representative: + +File menu -> Open -> select cluster_1_model_1.pdb.gz + +Repeat this for each cluster. + +Alternatively you could start PyMol from the command line (if available) and load all models at once: + + +pymol *_1.pdb.gz + + +Once all files have been loaded, type in the PyMOL command window: + + +show cartoon
+util.cbc
+hide lines
+
+ +Let's then superimpose all models on chain A of the first cluster: + + +select cluster_1_model_1 and chain A
+alignto sele
+
+ +This will align all clusters on chain A (E2A), maximizing the differences in the orientation of chain B (HPR). + + +Examine the various clusters. How does the orientation of HPR differ between them? + + +**Note:** You can turn on and off a cluster by clicking on its name in the right panel of the PyMOL window. + +Let's now check if the active residues which we defined are actually part of the interface. In the PyMOL command window type: + + +select e2a_active, (resi 38,40,45,46,69,71,78,80,94,96,141) and chain A
+select hpr_active, (resi 15,16,17,20,48,49,51,52,54,56) and chain B
+color red, e2a_active
+color orange, hpr_active
+
+ + +Are the active residues in the interface? + + + +
+
+ + +## Biological insights + +The E2A-HPR complex is involved in phosphate-transfer, in which a phosphate group attached to histidine 90 of E2A (which we named NEP) is transferred to a histidine of HPR. As such, the docking models should make sense according to this information, meaning that two histidines should be in close proximity at the interface. Using PyMOL, check the various cluster representatives (we are assuming here you have performed all PyMOL commands of the previous section): + + +select histidines, resn HIS+NEP
+show spheres, histidines
+util.cnc
+
+ +First of all, has the phosphate group been properly generated? + +**Note:** You can zoom on the phosphorylated histidine using the following PyMOL command: + + +zoom resn NEP
+
+ +
+ +
+ +Zoom back to all visible molecules with + + +zoom vis
+
+ +Now inspect each cluster in turn and check if histidine 90 of E2A is in close proximity to another histidine of HPR. +To facilitate this analysis, view each cluster in turn (use the right panel to activate/desactivate the various clusters by clicking on their name). + +Based on this analysis, which cluster does satisfy best the biolocal information? + +Is this cluster also the best ranked one? + + +
+
+ +## Comparison with the reference structure + +As explained in the introduction, the structure of the native complex has been determined by NMR (PDB ID [1GGR](https://www.ebi.ac.uk/pdbe/entry/pdb/1ggr){:target="_blank"}) using a combination of intermolecular NOEs and dipolar coupling restraints. We will now compare the docking models with this structure. + +If you still have all cluster representative open in PyMOL you can proceed with the sub-sequent analysis, otherwise load again each cluster representative as described above. Then, fetch the reference complex by typing in PyMOL: + + +fetch 1GGR
+show cartoon
+color yellow, 1GGR and chain A
+color orange, 1GGR and chain B
+
+ +The number of chain B in this structure is however different from the HPR numbering in the structure we used: It starts at 301 while in our models chain B starts at 1. We can change the residue numbering easily in PyMol with the following command: + + +alter (chain B and 1GGR), resv -=300
+
+ +Then superimpose all cluster representatives on the reference structure, using the entire chain A (E2A): + + +select 1GGR and chain A
+alignto sele
+
+ + +Does any of the cluster representatives ressemble the reference NMR structure? + + +In case you found a reasonable prediction, what is its cluster rank? + + +**_Note_** that based on the CAPRI analysis output discussed previously you should already know the answer to these questions. +
+
+ +## Congratulations! 🎉 + +You have completed this tutorial. If you have any questions or suggestions, feel free to contact us via email or asking a question through our [support center](https://ask.bioexcel.eu){:target="_blank"}. + +And check also our [education](/education) web page where you will find more tutorials! + + + +[air-help]: https://www.bonvinlab.org/software/haddock2.4/airs/ "AIRs help" +[haddock-restraints]: https://wenmr.science.uu.nl/haddock-restraints/ "haddock-restraints" +[haddock24protein]: /education/HADDOCK24/HADDOCK24-protein-protein-basic/ +[haddock-repo]: https://github.com/haddocking/haddock3 "HADDOCK3 GitHub" +[haddock-tools]: https://github.com/haddocking/haddock-tools "HADDOCK tools GitHub" +[installation]: https://www.bonvinlab.org/haddock3/INSTALL.html "Installation" +[link-cns]: https://cns-online.org "CNS online" +[link-forum]: https://ask.bioexcel.eu/c/haddock "HADDOCK Forum" +[link-pdbtools]:http://www.bonvinlab.org/pdb-tools/ "PDB-Tools" +[link-pymol]: https://www.pymol.org/ "PyMOL" +[nat-pro]: https://www.nature.com/articles/s41596-024-01011-0.epdf?sharing_token=UHDrW9bNh3BqijxD2u9Xd9RgN0jAjWel9jnR3ZoTv0O8Cyf_B_3QikVaNIBRHxp9xyFsQ7dSV3t-kBtpCaFZWPfnuUnAtvRG_vkef9o4oWuhrOLGbBXJVlaaA9ALOULn6NjxbiqC2VkmpD2ZR_r-o0sgRZoHVz10JqIYOeus_nM%3D "Nature protocol" +[tbl-examples]: https://github.com/haddocking/haddock-tools/tree/master/haddock_tbl_validation "tbl examples" diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/phosphorylated-histidine.png b/education/HADDOCK3/HADDOCK3-protein-protein/phosphorylated-histidine.png new file mode 100644 index 000000000..8cd9d8148 Binary files /dev/null and b/education/HADDOCK3/HADDOCK3-protein-protein/phosphorylated-histidine.png differ diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/air_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/air_clt.html new file mode 100644 index 000000000..af9cecbd9 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/air_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/bsa_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/bsa_clt.html new file mode 100644 index 000000000..166d82c7a --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/bsa_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/capri_clt.tsv b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/capri_clt.tsv new file mode 100644 index 000000000..874e1c537 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/capri_clt.tsv @@ -0,0 +1,17 @@ +######################################## +# `caprieval` cluster-based analysis +# +# > sortby_key=score +# > sort_ascending=True +# > clt_threshold=4 +# +# NOTE: if under_eval=yes, it means that there were less models in a cluster than +# clt_threshold, thus these values were under evaluated. +# You might need to tweak the value of clt_threshold or change some parameters +# in `clustfcc` depending on your analysis. +# +######################################## +cluster_rank cluster_id n under_eval score score_std irmsd irmsd_std fnat fnat_std lrmsd lrmsd_std dockq dockq_std ilrmsd ilrmsd_std rmsd rmsd_std air air_std bsa bsa_std desolv desolv_std elec elec_std total total_std vdw vdw_std caprieval_rank +1 1 10 - -145.291 1.655 1.017 0.053 0.875 0.014 1.475 0.022 0.844 0.012 1.646 0.125 0.920 0.036 10.765 2.663 1643.615 49.842 -12.202 3.521 -484.538 33.578 -511.030 30.842 -37.257 3.455 1 +2 2 10 - -104.588 5.104 7.967 0.362 0.125 0.069 15.246 0.938 0.133 0.031 14.405 0.552 8.271 0.392 38.880 9.265 1401.525 77.410 -14.119 0.968 -339.316 28.112 -326.929 17.229 -26.494 8.879 2 +3 3 6 - -88.298 4.646 3.016 0.265 0.326 0.030 8.303 1.830 0.350 0.052 7.289 0.855 2.997 0.436 28.868 21.272 1240.365 112.271 -16.524 4.943 -270.877 44.513 -262.493 33.887 -20.485 2.141 3 diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/capri_ss.tsv b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/capri_ss.tsv new file mode 100644 index 000000000..4930493b3 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/capri_ss.tsv @@ -0,0 +1,27 @@ +model md5 caprieval_rank score irmsd fnat lrmsd ilrmsd dockq rmsd cluster_id cluster_ranking model-cluster_ranking air angles bonds bsa cdih coup dani desolv dihe elec improper rdcs rg sym total vdw vean xpcs +../../10_seletopclusts/cluster_1_model_1.pdb - 1 -148.148 1.030 0.889 1.472 1.672 0.846 0.927 1 1 1 6.170 241.843 37.056 1702.360 0.000 0.000 0.000 -13.126 1283.440 -496.737 47.899 0.000 0.000 0.000 -526.858 -36.292 0.000 0.000 +../../10_seletopclusts/cluster_1_model_2.pdb - 2 -144.448 1.039 0.861 1.481 1.712 0.836 0.934 1 1 2 12.376 224.041 34.946 1659.740 0.000 0.000 0.000 -8.098 1291.960 -499.715 47.404 0.000 0.000 0.000 -524.983 -37.644 0.000 0.000 +../../10_seletopclusts/cluster_1_model_3.pdb - 3 -144.433 1.070 0.861 1.505 1.761 0.831 0.959 1 1 3 12.586 234.166 37.464 1647.550 0.000 0.000 0.000 -10.129 1295.290 -514.186 49.351 0.000 0.000 0.000 -534.325 -32.725 0.000 0.000 +../../10_seletopclusts/cluster_1_model_4.pdb - 4 -144.132 0.929 0.889 1.442 1.437 0.861 0.862 1 1 4 11.926 240.560 37.771 1564.810 0.000 0.000 0.000 -17.454 1294.750 -427.513 50.907 0.000 0.000 0.000 -457.955 -42.368 0.000 0.000 +../../10_seletopclusts/cluster_1_model_5.pdb - 5 -143.752 1.001 0.833 1.372 1.622 0.833 0.876 1 1 5 5.488 231.499 36.613 1572.410 0.000 0.000 0.000 -11.923 1277.090 -496.649 49.195 0.000 0.000 0.000 -524.208 -33.047 0.000 0.000 +../../10_seletopclusts/cluster_1_model_6.pdb - 6 -143.696 0.988 0.917 1.627 1.615 0.860 0.992 1 1 6 7.345 218.970 38.254 1714.640 0.000 0.000 0.000 -11.093 1288.610 -487.333 47.053 0.000 0.000 0.000 -515.859 -35.871 0.000 0.000 +../../10_seletopclusts/cluster_1_model_7.pdb - 7 -140.912 1.184 0.861 3.017 2.531 0.789 1.217 1 1 7 4.237 225.209 36.377 1452.020 0.000 0.000 0.000 -7.363 1287.610 -519.291 47.650 0.000 0.000 0.000 -545.167 -30.114 0.000 0.000 +../../10_seletopclusts/cluster_1_model_8.pdb - 8 -140.556 0.999 0.861 2.231 1.898 0.830 1.077 1 1 8 5.535 223.803 38.115 1498.520 0.000 0.000 0.000 -5.082 1300.940 -509.899 47.493 0.000 0.000 0.000 -538.412 -34.048 0.000 0.000 +../../10_seletopclusts/cluster_1_model_9.pdb - 9 -138.044 0.947 0.861 1.504 1.580 0.849 0.884 1 1 9 15.511 230.652 36.887 1617.810 0.000 0.000 0.000 -8.979 1281.500 -519.601 49.390 0.000 0.000 0.000 -530.785 -26.696 0.000 0.000 +../../10_seletopclusts/cluster_1_model_10.pdb - 10 -133.506 0.922 0.833 1.628 1.538 0.841 0.920 1 1 10 38.958 223.822 36.196 1575.920 0.000 0.000 0.000 -15.287 1290.450 -394.323 48.797 0.000 0.000 0.000 -398.615 -43.250 0.000 0.000 +../../10_seletopclusts/cluster_2_model_1.pdb - 11 -113.043 7.502 0.194 14.219 13.593 0.165 7.833 2 2 1 38.565 228.865 36.719 1525.590 0.000 0.000 0.000 -15.441 1296.580 -312.902 45.877 0.000 0.000 0.000 -313.214 -38.878 0.000 0.000 +../../10_seletopclusts/cluster_2_model_2.pdb - 12 -104.185 7.795 0.194 14.418 14.289 0.163 7.972 2 2 2 35.423 228.494 38.563 1407.960 0.000 0.000 0.000 -14.609 1296.600 -311.475 46.882 0.000 0.000 0.000 -306.875 -30.823 0.000 0.000 +../../10_seletopclusts/cluster_2_model_3.pdb - 13 -100.849 8.095 0.056 16.001 14.629 0.103 8.468 2 2 3 28.035 212.819 37.270 1339.490 0.000 0.000 0.000 -12.969 1289.110 -356.037 44.672 0.000 0.000 0.000 -347.478 -19.476 0.000 0.000 +../../10_seletopclusts/cluster_2_model_4.pdb - 14 -100.277 8.479 0.056 16.345 15.110 0.100 8.813 2 2 4 53.499 210.454 38.200 1333.060 0.000 0.000 0.000 -13.458 1310.400 -376.850 45.320 0.000 0.000 0.000 -340.150 -16.799 0.000 0.000 +../../10_seletopclusts/cluster_2_model_5.pdb - 15 -99.878 8.703 0.056 16.954 15.343 0.095 9.185 2 2 5 48.906 217.285 37.059 1297.700 0.000 0.000 0.000 -13.814 1289.830 -380.224 45.463 0.000 0.000 0.000 -346.229 -14.910 0.000 0.000 +../../10_seletopclusts/cluster_2_model_6.pdb - 16 -98.980 9.021 0.056 18.200 15.959 0.087 9.556 2 2 6 49.601 216.178 37.184 1319.240 0.000 0.000 0.000 -15.519 1275.690 -334.493 45.325 0.000 0.000 0.000 -306.415 -21.522 0.000 0.000 +../../10_seletopclusts/cluster_2_model_7.pdb - 17 -97.797 7.342 0.167 13.585 13.857 0.163 7.405 2 2 7 64.216 210.037 36.678 1443.920 0.000 0.000 0.000 -9.880 1288.910 -285.376 44.075 0.000 0.000 0.000 -258.424 -37.264 0.000 0.000 +../../10_seletopclusts/cluster_2_model_8.pdb - 18 -97.705 8.256 0.056 15.683 15.048 0.105 8.431 2 2 8 32.552 207.238 35.907 1253.190 0.000 0.000 0.000 -13.081 1285.270 -325.427 44.815 0.000 0.000 0.000 -315.670 -22.794 0.000 0.000 +../../10_seletopclusts/cluster_2_model_9.pdb - 19 -97.374 8.676 0.056 17.204 15.451 0.094 9.173 2 2 9 7.802 215.916 38.084 1270.780 0.000 0.000 0.000 -12.755 1284.900 -359.443 44.792 0.000 0.000 0.000 -365.152 -13.511 0.000 0.000 +../../10_seletopclusts/cluster_2_model_10.pdb - 20 -95.451 8.120 0.083 16.057 14.536 0.112 8.546 2 2 10 73.609 219.049 37.455 1360.960 0.000 0.000 0.000 -12.862 1286.720 -377.075 42.219 0.000 0.000 0.000 -318.002 -14.536 0.000 0.000 +../../10_seletopclusts/cluster_3_model_1.pdb - 21 -92.363 2.799 0.361 6.678 6.646 0.401 2.561 3 3 1 14.359 226.737 36.300 1203.600 0.000 0.000 0.000 -22.700 1289.800 -268.003 44.255 0.000 0.000 0.000 -271.141 -17.498 0.000 0.000 +../../10_seletopclusts/cluster_3_model_2.pdb - 22 -91.553 3.468 0.278 10.952 8.750 0.270 3.622 3 3 2 29.932 218.997 38.314 1325.720 0.000 0.000 0.000 -11.118 1291.220 -318.369 45.612 0.000 0.000 0.000 -308.191 -19.754 0.000 0.000 +../../10_seletopclusts/cluster_3_model_3.pdb - 23 -88.666 2.912 0.333 9.060 7.022 0.337 3.188 3 3 3 63.050 215.586 36.015 1358.550 0.000 0.000 0.000 -12.261 1293.980 -296.871 41.318 0.000 0.000 0.000 -257.157 -23.335 0.000 0.000 +../../10_seletopclusts/cluster_3_model_4.pdb - 24 -80.611 2.883 0.333 6.523 6.736 0.392 2.618 3 3 4 8.132 225.269 38.628 1073.590 0.000 0.000 0.000 -20.019 1294.720 -200.263 46.780 0.000 0.000 0.000 -213.484 -21.353 0.000 0.000 +../../10_seletopclusts/cluster_3_model_5.pdb - 25 -80.286 3.002 0.361 8.548 7.555 0.353 2.822 3 3 5 31.786 228.764 36.854 1179.350 0.000 0.000 0.000 -17.155 1310.770 -224.485 47.051 0.000 0.000 0.000 -214.111 -21.412 0.000 0.000 +../../10_seletopclusts/cluster_3_model_6.pdb - 26 -75.568 3.162 0.306 8.479 7.105 0.330 3.073 3 3 6 66.058 228.275 36.996 1203.400 0.000 0.000 0.000 -12.431 1308.220 -246.656 42.776 0.000 0.000 0.000 -201.009 -20.412 0.000 0.000 diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/desolv_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/desolv_clt.html new file mode 100644 index 000000000..d605d3311 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/desolv_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_air.html new file mode 100644 index 000000000..fb03b94b1 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_clt.html new file mode 100644 index 000000000..7cc02cb34 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_desolv.html new file mode 100644 index 000000000..a0b136494 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_elec.html new file mode 100644 index 000000000..530f8a1c2 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_score.html new file mode 100644 index 000000000..a28dbc691 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_vdw.html new file mode 100644 index 000000000..677974c2c --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/dockq_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/elec_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/elec_clt.html new file mode 100644 index 000000000..86cd80f0d --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/elec_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_air.html new file mode 100644 index 000000000..b90ba80af --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_clt.html new file mode 100644 index 000000000..60941eacb --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_desolv.html new file mode 100644 index 000000000..f46851124 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_elec.html new file mode 100644 index 000000000..fe9eb25c3 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_score.html new file mode 100644 index 000000000..d384fa754 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_vdw.html new file mode 100644 index 000000000..f684b26f2 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/fnat_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_air.html new file mode 100644 index 000000000..e837f95d4 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_clt.html new file mode 100644 index 000000000..6a1d0a42e --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_desolv.html new file mode 100644 index 000000000..a6d7078ea --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_elec.html new file mode 100644 index 000000000..29e0096b1 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_score.html new file mode 100644 index 000000000..0ee336d16 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_vdw.html new file mode 100644 index 000000000..dfbdccece --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/ilrmsd_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_air.html new file mode 100644 index 000000000..0915f2e36 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_clt.html new file mode 100644 index 000000000..4e2ad6f82 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_desolv.html new file mode 100644 index 000000000..f944ba44d --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_elec.html new file mode 100644 index 000000000..7920a7096 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_score.html new file mode 100644 index 000000000..dd6e9157f --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_vdw.html new file mode 100644 index 000000000..a3e4f02c7 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/irmsd_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_air.html new file mode 100644 index 000000000..259490359 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_clt.html new file mode 100644 index 000000000..be62ee5da --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_desolv.html new file mode 100644 index 000000000..8b1290649 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_elec.html new file mode 100644 index 000000000..6d2aebc95 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_score.html new file mode 100644 index 000000000..1ca3c4fe5 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_vdw.html new file mode 100644 index 000000000..db74c6bb8 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/lrmsd_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/report.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/report.html new file mode 100644 index 000000000..bb29af4de --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/report.html @@ -0,0 +1,94 @@ +Analysis report of step 11_caprieval

Analysis report of step 11_caprieval


+
+
+ +
+
+ + +
+
+ + +
+
+
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/score_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/score_clt.html new file mode 100644 index 000000000..c0128b6c5 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/score_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/summary.tgz b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/summary.tgz new file mode 100644 index 000000000..f5c695e3e Binary files /dev/null and b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/summary.tgz differ diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/vdw_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/vdw_clt.html new file mode 100644 index 000000000..331ed0649 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario1/vdw_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/air_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/air_clt.html new file mode 100644 index 000000000..ca12583c7 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/air_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/bsa_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/bsa_clt.html new file mode 100644 index 000000000..65e98e1cd --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/bsa_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/capri_clt.tsv b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/capri_clt.tsv new file mode 100644 index 000000000..25fd62a26 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/capri_clt.tsv @@ -0,0 +1,35 @@ +######################################## +# `caprieval` cluster-based analysis +# +# > sortby_key=score +# > sort_ascending=True +# > clt_threshold=4 +# +# NOTE: if under_eval=yes, it means that there were less models in a cluster than +# clt_threshold, thus these values were under evaluated. +# You might need to tweak the value of clt_threshold or change some parameters +# in `clustfcc` depending on your analysis. +# +######################################## +cluster_rank cluster_id n under_eval score score_std irmsd irmsd_std fnat fnat_std lrmsd lrmsd_std dockq dockq_std ilrmsd ilrmsd_std rmsd rmsd_std air air_std bsa bsa_std desolv desolv_std elec elec_std total total_std vdw vdw_std caprieval_rank +1 5 10 - -125.359 4.388 3.086 1.251 0.444 0.243 5.081 1.934 0.486 0.210 5.430 2.196 2.786 1.069 32.048 22.948 1571.068 28.129 -9.514 3.821 -425.572 37.053 -427.459 35.932 -33.935 6.140 1 +2 1 10 - -123.194 8.135 0.981 0.044 0.806 0.028 2.184 0.304 0.814 0.015 1.778 0.162 1.033 0.049 13.946 5.260 1512.048 55.324 -14.070 3.982 -355.866 74.954 -381.265 63.589 -39.345 8.147 2 +3 12 9 - -113.938 3.437 10.571 0.039 0.062 0.012 18.283 0.177 0.087 0.005 17.648 0.108 10.195 0.028 24.749 14.446 1764.635 32.066 -8.174 2.757 -314.484 11.793 -335.077 7.399 -45.342 4.611 3 +4 8 10 - -110.012 6.398 6.667 1.272 0.215 0.041 12.111 2.232 0.204 0.051 11.792 2.259 6.712 1.253 45.220 27.328 1549.892 64.533 -5.661 5.224 -390.860 30.329 -376.341 47.099 -30.701 4.458 4 +5 4 10 - -108.676 5.869 10.499 0.129 0.069 0.014 17.298 0.172 0.095 0.005 17.197 0.207 10.293 0.108 11.946 15.401 1544.793 64.698 -2.523 4.998 -384.582 44.071 -403.067 53.117 -30.431 7.890 5 +6 21 4 - -102.620 23.209 1.649 0.524 0.681 0.140 4.128 1.761 0.654 0.140 3.513 1.386 1.672 0.562 31.928 23.111 1357.930 147.749 -12.666 4.195 -341.057 43.613 -334.063 74.936 -24.935 8.479 6 +7 2 10 - -102.124 1.874 8.709 0.505 0.076 0.053 16.364 0.337 0.106 0.019 15.418 0.657 9.065 0.469 33.207 17.921 1329.695 79.441 -12.247 1.007 -369.341 21.900 -355.464 12.401 -19.329 3.840 7 +8 10 10 - -101.907 3.082 9.371 0.165 0.090 0.012 15.797 0.261 0.113 0.003 16.570 0.220 8.647 0.174 8.097 3.210 1415.988 35.893 -6.841 0.611 -271.088 11.440 -304.651 11.812 -41.658 2.132 8 +9 18 5 - -98.092 5.846 10.738 0.030 0.132 0.023 19.525 0.698 0.104 0.006 17.449 0.101 11.122 0.149 34.083 3.478 1377.390 64.030 -20.159 2.582 -235.614 29.112 -235.750 29.647 -34.219 2.454 9 +10 7 10 - -94.360 4.046 10.858 0.034 0.111 0.028 18.439 0.384 0.102 0.011 17.808 0.240 10.684 0.070 43.394 27.139 1505.900 65.731 -15.427 1.135 -224.854 44.571 -219.762 48.090 -38.302 5.864 10 +11 17 5 - -93.344 2.375 9.295 0.130 0.069 0.014 15.673 0.269 0.107 0.006 15.506 0.175 8.965 0.082 48.231 24.425 1500.330 86.456 -10.426 4.687 -267.404 39.376 -253.434 32.297 -34.260 2.445 11 +12 3 10 - -93.174 2.214 7.066 0.716 0.083 0.056 12.460 1.736 0.151 0.006 13.150 1.720 6.607 0.728 41.548 22.209 1181.820 27.395 -11.433 2.031 -322.491 35.935 -302.340 40.530 -21.397 7.920 12 +13 14 8 - -92.717 9.474 4.740 0.956 0.278 0.115 15.360 3.199 0.211 0.085 11.538 2.537 5.285 0.978 14.441 21.804 1351.725 138.474 -2.305 4.295 -313.494 33.803 -328.210 52.151 -29.157 5.413 13 +14 9 10 - -92.512 2.704 6.006 0.705 0.132 0.030 13.310 1.341 0.162 0.028 11.059 1.234 6.347 0.699 36.390 4.506 1515.135 68.122 -4.445 4.691 -294.152 45.932 -290.638 45.787 -32.876 4.149 14 +15 20 4 - -87.091 14.312 6.080 0.056 0.007 0.012 9.910 0.394 0.163 0.008 12.295 0.666 5.170 0.228 36.574 21.213 1280.060 227.092 3.292 3.601 -354.703 42.910 -341.228 50.728 -23.100 7.777 15 +16 19 4 - -82.561 4.737 10.471 0.203 0.076 0.012 17.850 0.115 0.094 0.004 17.887 0.456 10.255 0.108 57.751 22.350 1456.233 47.296 2.020 3.524 -300.527 60.550 -273.027 45.767 -30.251 8.039 16 +17 6 10 - -78.096 1.276 8.664 0.310 0.097 0.031 14.559 0.423 0.127 0.013 15.264 0.157 8.073 0.465 25.747 19.256 1281.750 84.282 -2.103 3.681 -294.634 35.352 -288.529 15.213 -19.642 7.157 17 +18 16 5 - -77.001 14.086 10.444 0.226 0.083 0.020 18.519 1.216 0.093 0.005 17.777 0.581 9.910 0.296 56.060 14.408 1337.155 124.229 -1.707 3.567 -288.270 51.526 -255.455 68.193 -23.245 6.011 18 +19 11 9 - -71.077 9.704 4.883 0.281 0.125 0.057 10.033 0.449 0.210 0.026 8.851 0.651 4.978 0.290 71.689 25.649 1418.830 120.651 1.831 1.470 -235.329 27.016 -196.651 39.597 -33.011 7.464 19 +20 15 6 - -66.760 4.851 5.334 0.168 0.076 0.030 15.837 0.577 0.125 0.011 13.994 0.395 4.917 0.222 60.002 23.499 1302.927 47.402 -13.791 2.317 -179.987 19.337 -142.957 17.357 -22.972 7.125 20 +21 13 8 - -61.744 6.369 12.082 0.275 0.042 0.014 27.742 2.419 0.048 0.009 23.755 1.443 11.710 0.370 23.892 12.304 988.051 54.474 -1.164 4.633 -215.609 32.195 -211.565 22.347 -19.847 5.152 21 diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/capri_ss.tsv b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/capri_ss.tsv new file mode 100644 index 000000000..c413ef9be --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/capri_ss.tsv @@ -0,0 +1,168 @@ +model md5 caprieval_rank score irmsd fnat lrmsd ilrmsd dockq rmsd cluster_id cluster_ranking model-cluster_ranking air angles bonds bsa cdih coup dani desolv dihe elec improper rdcs rg sym total vdw vean xpcs +../../11_seletopclusts/cluster_1_model_1.pdb - 1 -129.298 3.878 0.333 6.369 6.873 0.368 3.456 5 1 1 54.718 216.338 35.740 1586.200 0.000 0.000 0.000 -11.352 1285.440 -420.635 44.826 0.000 0.000 0.000 -405.207 -39.291 0.000 0.000 +../../11_seletopclusts/cluster_6_model_1.pdb - 2 -128.661 1.069 0.806 1.892 1.857 0.807 0.998 21 6 1 10.938 244.169 37.191 1553.370 0.000 0.000 0.000 -18.811 1288.800 -378.329 48.781 0.000 0.000 0.000 -402.670 -35.278 0.000 0.000 +../../11_seletopclusts/cluster_2_model_1.pdb - 3 -128.437 1.032 0.778 2.539 1.853 0.791 1.101 1 2 1 11.211 224.092 40.265 1552.190 0.000 0.000 0.000 -14.831 1288.080 -365.639 51.814 0.000 0.000 0.000 -396.027 -41.599 0.000 0.000 +../../11_seletopclusts/cluster_2_model_2.pdb - 4 -127.785 1.005 0.833 2.361 1.979 0.817 1.054 1 2 2 22.976 222.124 39.437 1480.860 0.000 0.000 0.000 -8.128 1292.160 -474.477 46.031 0.000 0.000 0.000 -478.561 -27.059 0.000 0.000 +../../11_seletopclusts/cluster_2_model_3.pdb - 5 -127.436 0.914 0.833 2.105 1.539 0.835 1.007 1 2 3 11.754 218.776 38.321 1576.920 0.000 0.000 0.000 -19.319 1299.260 -297.472 48.349 0.000 0.000 0.000 -335.517 -49.799 0.000 0.000 +../../11_seletopclusts/cluster_1_model_2.pdb - 6 -127.377 3.751 0.250 5.942 6.468 0.353 3.355 5 1 2 6.792 204.688 35.774 1609.450 0.000 0.000 0.000 -4.176 1294.490 -463.265 41.892 0.000 0.000 0.000 -487.700 -31.227 0.000 0.000 +../../11_seletopclusts/cluster_1_model_3.pdb - 7 -126.837 0.921 0.861 1.742 1.635 0.849 0.936 5 1 3 11.531 224.736 37.611 1548.240 0.000 0.000 0.000 -14.458 1295.750 -367.300 45.824 0.000 0.000 0.000 -395.841 -40.072 0.000 0.000 +../../11_seletopclusts/cluster_6_model_2.pdb - 8 -122.668 1.185 0.833 2.938 2.428 0.781 1.234 21 6 2 7.414 243.677 37.258 1448.540 0.000 0.000 0.000 -14.188 1293.530 -389.936 50.274 0.000 0.000 0.000 -413.756 -31.234 0.000 0.000 +../../11_seletopclusts/cluster_3_model_1.pdb - 9 -119.267 10.526 0.083 18.032 17.541 0.095 10.161 12 3 1 6.534 210.885 36.221 1767.200 0.000 0.000 0.000 -8.553 1292.020 -296.655 43.574 0.000 0.000 0.000 -342.158 -52.036 0.000 0.000 +../../11_seletopclusts/cluster_5_model_1.pdb - 10 -118.422 10.337 0.083 17.012 17.070 0.101 10.124 4 5 1 1.299 216.816 37.855 1625.020 0.000 0.000 0.000 -2.249 1294.420 -396.305 47.455 0.000 0.000 0.000 -432.049 -37.042 0.000 0.000 +../../11_seletopclusts/cluster_1_model_4.pdb - 11 -117.925 3.795 0.333 6.270 6.746 0.372 3.397 5 1 4 55.150 226.698 37.367 1540.380 0.000 0.000 0.000 -8.070 1303.200 -451.087 47.772 0.000 0.000 0.000 -421.089 -25.152 0.000 0.000 +../../11_seletopclusts/cluster_4_model_1.pdb - 12 -116.216 7.462 0.194 13.557 13.692 0.172 7.391 8 4 1 88.117 224.663 37.309 1627.170 0.000 0.000 0.000 -14.089 1306.970 -385.614 47.937 0.000 0.000 0.000 -331.313 -33.815 0.000 0.000 +../../11_seletopclusts/cluster_3_model_2.pdb - 13 -114.576 10.631 0.056 18.506 17.817 0.083 10.227 12 3 2 14.913 215.858 38.848 1807.110 0.000 0.000 0.000 -11.491 1302.760 -314.021 45.584 0.000 0.000 0.000 -340.880 -41.772 0.000 0.000 +../../11_seletopclusts/cluster_4_model_2.pdb - 14 -112.969 4.773 0.278 8.643 8.432 0.286 4.819 8 4 2 41.084 218.465 38.966 1591.470 0.000 0.000 0.000 -2.909 1299.510 -389.836 45.610 0.000 0.000 0.000 -384.953 -36.200 0.000 0.000 +../../11_seletopclusts/cluster_4_model_3.pdb - 15 -111.536 6.309 0.222 11.750 11.033 0.206 6.453 8 4 3 12.079 229.530 39.624 1521.240 0.000 0.000 0.000 -0.135 1313.190 -436.605 44.412 0.000 0.000 0.000 -449.815 -25.288 0.000 0.000 +../../11_seletopclusts/cluster_3_model_3.pdb - 16 -111.528 10.552 0.056 18.376 17.664 0.084 10.219 12 3 3 36.259 214.562 36.783 1716.740 0.000 0.000 0.000 -8.818 1280.410 -329.583 45.435 0.000 0.000 0.000 -333.742 -40.419 0.000 0.000 +../../11_seletopclusts/cluster_3_model_4.pdb - 17 -110.382 10.576 0.056 18.218 17.570 0.085 10.174 12 3 4 41.291 226.582 39.254 1767.490 0.000 0.000 0.000 -3.833 1301.930 -317.677 46.923 0.000 0.000 0.000 -323.529 -47.143 0.000 0.000 +../../11_seletopclusts/cluster_2_model_4.pdb - 18 -109.118 0.973 0.778 1.730 1.740 0.814 0.971 1 2 4 9.842 236.878 40.222 1438.220 0.000 0.000 0.000 -14.003 1299.230 -285.876 45.721 0.000 0.000 0.000 -314.957 -38.923 0.000 0.000 +../../11_seletopclusts/cluster_2_model_5.pdb - 19 -109.079 0.872 0.861 1.724 1.385 0.856 0.927 1 2 5 38.666 214.501 35.651 1509.700 0.000 0.000 0.000 -18.925 1295.000 -250.359 45.757 0.000 0.000 0.000 -255.642 -43.949 0.000 0.000 +../../11_seletopclusts/cluster_13_model_1.pdb - 20 -108.166 3.158 0.472 10.142 7.457 0.356 3.643 14 13 1 3.297 213.703 38.114 1589.670 0.000 0.000 0.000 -5.160 1295.640 -326.381 45.334 0.000 0.000 0.000 -361.144 -38.060 0.000 0.000 +../../11_seletopclusts/cluster_5_model_2.pdb - 21 -108.105 10.637 0.083 17.430 17.173 0.098 10.354 4 5 2 38.345 208.824 36.284 1580.500 0.000 0.000 0.000 -10.755 1302.770 -310.546 43.904 0.000 0.000 0.000 -311.275 -39.075 0.000 0.000 +../../11_seletopclusts/cluster_9_model_1.pdb - 22 -106.553 10.738 0.111 19.349 17.366 0.097 11.081 18 9 1 33.242 225.940 36.215 1420.320 0.000 0.000 0.000 -17.441 1298.450 -278.623 45.957 0.000 0.000 0.000 -282.093 -36.712 0.000 0.000 +../../11_seletopclusts/cluster_8_model_1.pdb - 23 -106.325 9.139 0.083 15.450 16.314 0.114 8.393 10 8 1 10.021 219.465 36.060 1379.420 0.000 0.000 0.000 -7.451 1293.620 -289.846 46.670 0.000 0.000 0.000 -321.732 -41.906 0.000 0.000 +../../11_seletopclusts/cluster_2_model_6.pdb - 24 -105.640 3.028 0.333 9.184 7.659 0.331 2.932 1 2 6 25.289 235.664 38.919 1452.310 0.000 0.000 0.000 -15.413 1326.660 -295.196 48.865 0.000 0.000 0.000 -303.624 -33.717 0.000 0.000 +../../11_seletopclusts/cluster_7_model_1.pdb - 25 -105.124 8.788 0.167 16.201 15.514 0.137 9.269 2 7 1 6.519 221.465 39.703 1435.030 0.000 0.000 0.000 -11.597 1307.000 -343.357 44.568 0.000 0.000 0.000 -362.346 -25.508 0.000 0.000 +../../11_seletopclusts/cluster_3_model_5.pdb - 26 -104.633 10.415 0.028 18.027 17.259 0.077 10.204 12 3 5 5.012 214.755 37.378 1550.340 0.000 0.000 0.000 -5.200 1301.440 -306.231 44.275 0.000 0.000 0.000 -339.907 -38.688 0.000 0.000 +../../11_seletopclusts/cluster_5_model_3.pdb - 27 -104.532 10.408 0.056 17.316 17.003 0.090 10.279 4 5 3 1.385 218.472 36.875 1452.830 0.000 0.000 0.000 1.910 1278.680 -405.521 44.436 0.000 0.000 0.000 -429.612 -25.476 0.000 0.000 +../../11_seletopclusts/cluster_5_model_4.pdb - 28 -103.646 10.613 0.056 17.434 17.540 0.089 10.413 4 5 4 6.755 210.819 38.457 1520.820 0.000 0.000 0.000 1.002 1283.500 -425.955 42.277 0.000 0.000 0.000 -439.333 -20.132 0.000 0.000 +../../11_seletopclusts/cluster_15_model_1.pdb - 29 -103.521 6.052 0.000 9.314 11.446 0.171 5.374 20 15 1 5.945 227.151 39.371 1553.570 0.000 0.000 0.000 -2.074 1290.580 -332.037 47.121 0.000 0.000 0.000 -361.726 -35.634 0.000 0.000 +../../11_seletopclusts/cluster_8_model_2.pdb - 30 -103.261 9.578 0.111 16.129 16.835 0.117 8.871 10 8 2 3.388 219.537 36.841 1432.370 0.000 0.000 0.000 -5.874 1294.330 -265.840 44.779 0.000 0.000 0.000 -307.009 -44.558 0.000 0.000 +../../11_seletopclusts/cluster_3_model_6.pdb - 31 -102.751 10.562 0.028 18.484 17.373 0.074 10.454 12 3 6 5.657 224.164 37.795 1582.190 0.000 0.000 0.000 -8.558 1301.440 -272.195 46.431 0.000 0.000 0.000 -306.858 -40.319 0.000 0.000 +../../11_seletopclusts/cluster_7_model_2.pdb - 32 -102.247 9.474 0.028 16.908 16.418 0.085 9.711 2 7 2 44.776 226.689 37.327 1211.200 0.000 0.000 0.000 -10.965 1286.110 -401.121 46.198 0.000 0.000 0.000 -371.881 -15.536 0.000 0.000 +../../11_seletopclusts/cluster_1_model_5.pdb - 33 -102.235 4.558 0.278 7.769 8.294 0.307 4.148 5 1 5 8.752 219.094 38.664 1334.110 0.000 0.000 0.000 -6.616 1308.690 -378.759 44.834 0.000 0.000 0.000 -390.749 -20.742 0.000 0.000 +../../11_seletopclusts/cluster_5_model_5.pdb - 34 -101.783 10.629 0.111 17.717 17.120 0.106 10.460 4 5 5 69.137 231.164 38.517 1599.320 0.000 0.000 0.000 -5.980 1309.380 -334.871 46.998 0.000 0.000 0.000 -301.476 -35.742 0.000 0.000 +../../11_seletopclusts/cluster_10_model_1.pdb - 35 -101.364 10.864 0.083 18.776 17.895 0.091 10.771 7 10 1 40.823 215.526 36.539 1477.370 0.000 0.000 0.000 -14.546 1284.700 -294.534 45.463 0.000 0.000 0.000 -285.705 -31.994 0.000 0.000 +../../11_seletopclusts/cluster_1_model_6.pdb - 36 -100.897 4.824 0.306 8.075 8.721 0.306 4.390 5 1 6 30.422 222.869 37.643 1372.200 0.000 0.000 0.000 -3.657 1284.020 -398.715 43.294 0.000 0.000 0.000 -388.831 -20.539 0.000 0.000 +../../11_seletopclusts/cluster_7_model_3.pdb - 37 -100.849 8.095 0.056 16.001 14.629 0.103 8.468 2 7 3 28.035 212.819 37.270 1339.490 0.000 0.000 0.000 -12.969 1289.110 -356.037 44.672 0.000 0.000 0.000 -347.478 -19.476 0.000 0.000 +../../11_seletopclusts/cluster_7_model_4.pdb - 38 -100.277 8.479 0.056 16.345 15.110 0.100 8.813 2 7 4 53.499 210.454 38.200 1333.060 0.000 0.000 0.000 -13.458 1310.400 -376.850 45.320 0.000 0.000 0.000 -340.150 -16.799 0.000 0.000 +../../11_seletopclusts/cluster_2_model_7.pdb - 39 -99.684 3.119 0.361 10.236 7.733 0.319 3.440 1 2 7 2.075 219.095 37.071 1354.770 0.000 0.000 0.000 -16.732 1300.710 -255.955 43.623 0.000 0.000 0.000 -285.848 -31.968 0.000 0.000 +../../11_seletopclusts/cluster_7_model_5.pdb - 40 -99.606 9.667 0.028 17.074 16.868 0.083 9.732 2 7 5 1.269 217.153 37.357 1166.100 0.000 0.000 0.000 -5.318 1282.170 -421.794 45.717 0.000 0.000 0.000 -430.581 -10.056 0.000 0.000 +../../11_seletopclusts/cluster_4_model_4.pdb - 41 -99.326 8.125 0.167 14.492 14.012 0.152 8.185 8 4 4 39.601 217.497 38.438 1459.690 0.000 0.000 0.000 -5.509 1305.750 -351.385 46.884 0.000 0.000 0.000 -339.283 -27.500 0.000 0.000 +../../11_seletopclusts/cluster_9_model_2.pdb - 42 -99.188 10.780 0.167 19.709 17.611 0.114 11.122 18 9 2 32.072 224.583 37.346 1459.380 0.000 0.000 0.000 -21.605 1310.720 -236.372 45.888 0.000 0.000 0.000 -237.815 -33.516 0.000 0.000 +../../11_seletopclusts/cluster_8_model_3.pdb - 43 -99.051 9.459 0.083 15.951 16.734 0.110 8.715 10 8 3 11.883 228.308 39.113 1466.970 0.000 0.000 0.000 -6.774 1286.770 -259.195 47.044 0.000 0.000 0.000 -288.939 -41.627 0.000 0.000 +../../11_seletopclusts/cluster_8_model_4.pdb - 44 -98.991 9.307 0.083 15.659 16.397 0.112 8.611 10 8 4 7.095 211.979 34.242 1385.190 0.000 0.000 0.000 -7.263 1291.810 -269.473 44.255 0.000 0.000 0.000 -300.922 -38.543 0.000 0.000 +../../11_seletopclusts/cluster_7_model_6.pdb - 45 -98.682 8.351 0.167 15.732 14.949 0.141 8.714 2 7 6 1.934 208.684 37.731 1277.930 0.000 0.000 0.000 -12.438 1295.400 -344.426 42.386 0.000 0.000 0.000 -360.044 -17.552 0.000 0.000 +../../11_seletopclusts/cluster_7_model_7.pdb - 46 -98.215 8.842 0.167 15.877 15.882 0.139 9.108 2 7 7 4.724 221.814 37.936 1238.030 0.000 0.000 0.000 -10.431 1287.100 -351.440 46.056 0.000 0.000 0.000 -364.684 -17.968 0.000 0.000 +../../11_seletopclusts/cluster_2_model_8.pdb - 47 -98.083 1.409 0.556 2.881 2.981 0.661 1.282 1 2 8 17.038 228.067 37.714 1374.790 0.000 0.000 0.000 -17.379 1307.890 -270.366 46.662 0.000 0.000 0.000 -281.663 -28.334 0.000 0.000 +../../11_seletopclusts/cluster_7_model_8.pdb - 48 -97.705 8.256 0.056 15.683 15.048 0.105 8.431 2 7 8 32.552 207.238 35.907 1253.190 0.000 0.000 0.000 -13.081 1285.270 -325.427 44.815 0.000 0.000 0.000 -315.670 -22.794 0.000 0.000 +../../11_seletopclusts/cluster_3_model_7.pdb - 49 -97.501 10.640 0.056 18.946 18.053 0.081 10.307 12 3 7 27.244 225.672 37.702 1525.620 0.000 0.000 0.000 -8.255 1283.040 -276.783 46.681 0.000 0.000 0.000 -286.153 -36.614 0.000 0.000 +../../11_seletopclusts/cluster_8_model_5.pdb - 50 -97.389 9.318 0.111 16.109 16.673 0.118 8.618 10 8 5 51.305 215.747 37.440 1380.470 0.000 0.000 0.000 -10.700 1303.100 -263.863 44.628 0.000 0.000 0.000 -251.605 -39.047 0.000 0.000 +../../11_seletopclusts/cluster_7_model_9.pdb - 51 -97.374 8.676 0.056 17.204 15.451 0.094 9.173 2 7 9 7.802 215.916 38.084 1270.780 0.000 0.000 0.000 -12.755 1284.900 -359.443 44.792 0.000 0.000 0.000 -365.152 -13.511 0.000 0.000 +../../11_seletopclusts/cluster_11_model_1.pdb - 52 -96.869 9.502 0.056 15.729 15.771 0.102 9.105 17 11 1 49.357 222.498 37.199 1559.160 0.000 0.000 0.000 -6.925 1292.340 -303.556 45.710 0.000 0.000 0.000 -288.368 -34.169 0.000 0.000 +../../11_seletopclusts/cluster_12_model_1.pdb - 53 -96.774 6.525 0.028 10.995 11.722 0.151 6.037 3 12 1 46.287 229.464 39.219 1153.300 0.000 0.000 0.000 -14.222 1295.430 -344.770 43.968 0.000 0.000 0.000 -316.710 -18.227 0.000 0.000 +../../11_seletopclusts/cluster_15_model_2.pdb - 54 -96.463 6.175 0.028 9.804 11.847 0.171 5.420 20 15 2 47.804 222.970 38.303 1445.210 0.000 0.000 0.000 2.148 1291.040 -406.133 45.595 0.000 0.000 0.000 -380.494 -22.165 0.000 0.000 +../../11_seletopclusts/cluster_9_model_3.pdb - 55 -96.335 10.737 0.111 18.551 17.364 0.101 10.934 18 9 3 39.957 233.995 37.833 1310.970 0.000 0.000 0.000 -23.657 1283.430 -230.788 47.487 0.000 0.000 0.000 -221.348 -30.516 0.000 0.000 +../../11_seletopclusts/cluster_14_model_1.pdb - 56 -96.130 5.792 0.139 13.411 10.789 0.163 6.189 9 14 1 30.738 220.405 39.063 1589.580 0.000 0.000 0.000 -2.953 1282.010 -305.865 47.744 0.000 0.000 0.000 -310.205 -35.078 0.000 0.000 +../../11_seletopclusts/cluster_5_model_6.pdb - 57 -96.095 10.490 0.083 18.068 16.970 0.095 10.415 4 5 6 19.624 227.671 37.032 1498.600 0.000 0.000 0.000 -5.343 1291.280 -395.920 47.157 0.000 0.000 0.000 -389.827 -13.531 0.000 0.000 +../../11_seletopclusts/cluster_3_model_8.pdb - 58 -95.007 10.538 0.056 17.730 17.386 0.087 10.092 12 3 8 19.324 215.152 35.808 1634.930 0.000 0.000 0.000 -8.788 1296.440 -267.549 43.114 0.000 0.000 0.000 -282.867 -34.642 0.000 0.000 +../../11_seletopclusts/cluster_4_model_5.pdb - 59 -94.908 7.051 0.222 12.628 12.985 0.192 6.887 8 4 5 5.948 220.105 36.502 1229.260 0.000 0.000 0.000 -11.945 1300.760 -272.097 42.996 0.000 0.000 0.000 -295.287 -29.138 0.000 0.000 +../../11_seletopclusts/cluster_2_model_9.pdb - 60 -94.588 0.978 0.750 2.250 1.697 0.795 0.985 1 2 9 40.280 214.039 36.163 1456.180 0.000 0.000 0.000 -21.530 1292.860 -179.931 45.471 0.000 0.000 0.000 -180.750 -41.099 0.000 0.000 +../../11_seletopclusts/cluster_7_model_10.pdb - 61 -94.229 9.111 0.028 17.536 15.983 0.081 9.545 2 7 10 10.092 206.149 36.103 1152.830 0.000 0.000 0.000 -9.867 1294.010 -394.300 44.771 0.000 0.000 0.000 -390.719 -6.511 0.000 0.000 +../../11_seletopclusts/cluster_11_model_2.pdb - 62 -94.101 9.234 0.083 15.484 15.456 0.114 8.910 17 11 2 67.212 219.648 37.305 1464.000 0.000 0.000 0.000 -16.223 1287.150 -231.917 43.660 0.000 0.000 0.000 -202.921 -38.216 0.000 0.000 +../../11_seletopclusts/cluster_5_model_7.pdb - 63 -94.045 9.539 0.083 16.906 15.869 0.103 9.586 4 5 7 98.352 216.281 36.644 1378.650 0.000 0.000 0.000 0.716 1295.570 -490.201 45.384 0.000 0.000 0.000 -398.405 -6.555 0.000 0.000 +../../11_seletopclusts/cluster_14_model_2.pdb - 64 -93.936 5.768 0.139 13.269 10.683 0.164 6.199 9 14 2 34.818 230.424 38.470 1547.670 0.000 0.000 0.000 -3.735 1277.910 -306.456 45.441 0.000 0.000 0.000 -304.030 -32.392 0.000 0.000 +../../11_seletopclusts/cluster_1_model_7.pdb - 65 -93.631 4.233 0.278 7.025 7.518 0.328 3.894 5 1 7 6.614 223.204 40.058 1252.660 0.000 0.000 0.000 -11.524 1294.610 -278.754 48.823 0.000 0.000 0.000 -299.157 -27.017 0.000 0.000 +../../11_seletopclusts/cluster_3_model_9.pdb - 66 -93.559 10.508 0.083 17.872 17.357 0.096 10.189 12 3 9 11.710 213.860 36.267 1535.490 0.000 0.000 0.000 -12.525 1293.820 -225.035 43.304 0.000 0.000 0.000 -250.523 -37.198 0.000 0.000 +../../11_seletopclusts/cluster_1_model_8.pdb - 67 -93.398 3.964 0.333 6.837 7.224 0.355 3.621 5 1 8 28.802 211.627 37.147 1354.900 0.000 0.000 0.000 -6.908 1282.200 -338.032 44.146 0.000 0.000 0.000 -330.993 -21.763 0.000 0.000 +../../11_seletopclusts/cluster_12_model_2.pdb - 68 -93.219 7.965 0.139 14.746 15.343 0.141 7.513 3 12 2 42.256 218.100 36.287 1174.160 0.000 0.000 0.000 -12.472 1292.200 -264.061 43.115 0.000 0.000 0.000 -253.965 -32.160 0.000 0.000 +../../11_seletopclusts/cluster_1_model_9.pdb - 69 -93.190 2.907 0.306 5.114 5.081 0.417 2.717 5 1 9 0.653 210.965 36.318 1351.480 0.000 0.000 0.000 -4.386 1280.750 -328.269 41.930 0.000 0.000 0.000 -350.831 -23.216 0.000 0.000 +../../11_seletopclusts/cluster_13_model_2.pdb - 70 -92.774 5.395 0.194 17.147 13.121 0.154 5.916 14 13 2 0.179 219.572 39.068 1277.550 0.000 0.000 0.000 3.308 1297.130 -361.187 43.569 0.000 0.000 0.000 -384.871 -23.863 0.000 0.000 +../../11_seletopclusts/cluster_2_model_10.pdb - 71 -92.363 2.799 0.361 6.678 6.646 0.401 2.561 1 2 10 14.359 226.737 36.300 1203.600 0.000 0.000 0.000 -22.700 1289.800 -268.003 44.255 0.000 0.000 0.000 -271.141 -17.498 0.000 0.000 +../../11_seletopclusts/cluster_4_model_6.pdb - 72 -92.256 5.936 0.222 10.807 11.082 0.221 5.799 8 4 6 47.446 233.186 37.902 1172.970 0.000 0.000 0.000 -10.591 1301.830 -260.732 49.112 0.000 0.000 0.000 -247.549 -34.263 0.000 0.000 +../../11_seletopclusts/cluster_10_model_2.pdb - 73 -92.199 10.865 0.139 18.585 17.913 0.110 10.715 7 10 2 23.622 225.947 37.376 1520.350 0.000 0.000 0.000 -17.376 1282.310 -174.619 45.806 0.000 0.000 0.000 -193.259 -42.262 0.000 0.000 +../../11_seletopclusts/cluster_4_model_7.pdb - 74 -92.165 7.632 0.167 13.577 13.929 0.162 7.552 8 4 7 87.530 228.684 38.106 1363.420 0.000 0.000 0.000 -6.840 1306.030 -363.619 46.579 0.000 0.000 0.000 -297.443 -21.354 0.000 0.000 +../../11_seletopclusts/cluster_10_model_3.pdb - 75 -92.036 10.804 0.139 17.786 17.401 0.115 10.580 7 10 3 88.470 229.020 40.069 1602.830 0.000 0.000 0.000 -14.834 1293.460 -201.375 47.318 0.000 0.000 0.000 -158.678 -45.773 0.000 0.000 +../../11_seletopclusts/cluster_4_model_8.pdb - 76 -91.846 5.814 0.250 10.681 10.355 0.233 5.839 8 4 8 65.706 220.735 36.506 1407.000 0.000 0.000 0.000 -6.737 1290.930 -284.455 46.435 0.000 0.000 0.000 -253.537 -34.788 0.000 0.000 +../../11_seletopclusts/cluster_10_model_4.pdb - 77 -91.843 10.900 0.083 18.607 18.022 0.092 10.671 7 10 4 20.661 211.253 37.780 1423.050 0.000 0.000 0.000 -14.951 1313.120 -228.889 43.309 0.000 0.000 0.000 -241.408 -33.180 0.000 0.000 +../../11_seletopclusts/cluster_11_model_3.pdb - 78 -91.642 9.294 0.083 15.391 15.514 0.114 8.904 17 11 3 68.366 220.667 37.815 1600.580 0.000 0.000 0.000 -4.841 1313.870 -309.707 45.089 0.000 0.000 0.000 -273.037 -31.696 0.000 0.000 +../../11_seletopclusts/cluster_10_model_5.pdb - 79 -91.463 10.947 0.111 19.666 18.323 0.096 10.888 7 10 5 35.225 215.302 37.302 1431.040 0.000 0.000 0.000 -16.767 1282.220 -189.113 42.197 0.000 0.000 0.000 -194.284 -40.397 0.000 0.000 +../../11_seletopclusts/cluster_5_model_8.pdb - 80 -91.456 10.158 0.083 17.191 16.697 0.100 10.077 4 5 8 0.463 212.861 35.945 1278.730 0.000 0.000 0.000 5.322 1279.780 -406.199 41.699 0.000 0.000 0.000 -421.320 -15.585 0.000 0.000 +../../11_seletopclusts/cluster_12_model_3.pdb - 81 -91.394 6.221 0.028 10.574 11.237 0.158 5.761 3 12 3 7.719 222.295 38.080 1227.070 0.000 0.000 0.000 -9.919 1291.740 -357.906 43.658 0.000 0.000 0.000 -360.852 -10.665 0.000 0.000 +../../11_seletopclusts/cluster_12_model_4.pdb - 82 -91.309 7.552 0.139 13.524 14.300 0.153 7.119 3 12 4 69.930 223.691 37.563 1172.750 0.000 0.000 0.000 -9.121 1301.710 -323.228 42.967 0.000 0.000 0.000 -277.834 -24.536 0.000 0.000 +../../11_seletopclusts/cluster_14_model_3.pdb - 83 -90.836 7.177 0.083 15.174 13.065 0.121 7.464 9 14 3 36.786 218.331 37.070 1405.790 0.000 0.000 0.000 0.891 1282.240 -344.841 42.084 0.000 0.000 0.000 -334.493 -26.437 0.000 0.000 +../../11_seletopclusts/cluster_11_model_4.pdb - 84 -90.763 9.151 0.056 16.088 15.284 0.100 8.940 17 11 4 7.990 223.184 36.262 1377.580 0.000 0.000 0.000 -13.714 1299.850 -224.438 45.510 0.000 0.000 0.000 -249.409 -32.960 0.000 0.000 +../../11_seletopclusts/cluster_9_model_4.pdb - 85 -90.292 10.696 0.139 20.491 17.457 0.102 11.350 18 9 4 31.062 223.908 36.936 1318.890 0.000 0.000 0.000 -17.931 1294.650 -196.672 45.426 0.000 0.000 0.000 -201.743 -36.133 0.000 0.000 +../../11_seletopclusts/cluster_8_model_6.pdb - 86 -90.179 9.533 0.111 16.334 16.727 0.116 8.964 10 8 6 5.061 217.732 35.202 1304.100 0.000 0.000 0.000 -7.251 1287.270 -258.908 44.727 0.000 0.000 0.000 -285.499 -31.652 0.000 0.000 +../../11_seletopclusts/cluster_12_model_5.pdb - 87 -89.992 5.986 0.056 10.381 10.586 0.172 5.711 3 12 5 9.812 226.993 39.570 1233.640 0.000 0.000 0.000 -13.310 1301.470 -267.454 43.338 0.000 0.000 0.000 -281.813 -24.172 0.000 0.000 +../../11_seletopclusts/cluster_4_model_9.pdb - 88 -89.816 4.966 0.250 8.953 9.130 0.269 4.878 8 4 9 26.297 222.149 37.559 1289.250 0.000 0.000 0.000 -9.219 1297.210 -233.249 44.654 0.000 0.000 0.000 -243.529 -36.577 0.000 0.000 +../../11_seletopclusts/cluster_14_model_4.pdb - 89 -89.148 5.288 0.167 11.386 9.697 0.200 5.535 9 14 4 43.218 222.677 38.317 1517.500 0.000 0.000 0.000 -11.982 1306.160 -219.445 44.707 0.000 0.000 0.000 -213.825 -37.599 0.000 0.000 +../../11_seletopclusts/cluster_4_model_10.pdb - 90 -88.909 6.620 0.194 11.771 11.916 0.195 6.532 8 4 10 90.247 229.071 38.577 1234.060 0.000 0.000 0.000 -9.656 1287.560 -326.433 44.462 0.000 0.000 0.000 -259.178 -22.992 0.000 0.000 +../../11_seletopclusts/cluster_8_model_7.pdb - 91 -88.859 9.474 0.056 15.699 16.485 0.102 8.799 10 8 7 10.629 215.066 37.680 1330.180 0.000 0.000 0.000 -7.071 1298.220 -236.412 44.382 0.000 0.000 0.000 -261.351 -35.568 0.000 0.000 +../../11_seletopclusts/cluster_14_model_5.pdb - 92 -88.269 6.075 0.139 14.395 11.304 0.152 6.574 9 14 5 9.323 221.658 39.136 1538.480 0.000 0.000 0.000 -5.955 1299.810 -241.717 45.190 0.000 0.000 0.000 -267.298 -34.904 0.000 0.000 +../../11_seletopclusts/cluster_5_model_9.pdb - 93 -88.039 9.834 0.083 16.520 16.501 0.105 9.644 4 5 9 42.660 199.933 36.251 1359.160 0.000 0.000 0.000 3.339 1283.000 -401.898 43.505 0.000 0.000 0.000 -374.503 -15.265 0.000 0.000 +../../11_seletopclusts/cluster_19_model_1.pdb - 94 -87.828 5.108 0.028 10.196 9.726 0.172 4.905 11 19 1 82.961 225.845 38.940 1520.030 0.000 0.000 0.000 3.148 1323.830 -278.324 46.485 0.000 0.000 0.000 -238.969 -43.607 0.000 0.000 +../../11_seletopclusts/cluster_18_model_1.pdb - 95 -87.632 10.296 0.056 17.734 17.493 0.088 9.682 16 18 1 38.962 228.971 37.231 1403.820 0.000 0.000 0.000 1.716 1306.240 -350.049 48.327 0.000 0.000 0.000 -334.322 -23.235 0.000 0.000 +../../11_seletopclusts/cluster_14_model_6.pdb - 96 -87.383 5.933 0.167 13.136 10.992 0.174 6.258 9 14 6 40.728 216.920 37.159 1521.970 0.000 0.000 0.000 -3.563 1283.910 -279.864 47.380 0.000 0.000 0.000 -271.056 -31.920 0.000 0.000 +../../11_seletopclusts/cluster_10_model_6.pdb - 97 -87.087 10.736 0.139 17.837 17.442 0.114 10.635 7 10 6 36.747 238.538 39.685 1507.790 0.000 0.000 0.000 -9.050 1299.950 -204.291 49.700 0.000 0.000 0.000 -208.397 -40.854 0.000 0.000 +../../11_seletopclusts/cluster_10_model_7.pdb - 98 -86.962 10.797 0.111 17.661 17.404 0.106 10.549 7 10 7 93.193 218.902 37.392 1560.200 0.000 0.000 0.000 -14.004 1283.000 -214.848 46.848 0.000 0.000 0.000 -160.962 -39.307 0.000 0.000 +../../11_seletopclusts/cluster_16_model_1.pdb - 99 -86.819 10.150 0.056 17.795 17.162 0.088 10.086 19 16 1 57.651 216.062 36.172 1501.140 0.000 0.000 0.000 2.523 1294.810 -367.877 43.894 0.000 0.000 0.000 -331.758 -21.532 0.000 0.000 +../../11_seletopclusts/cluster_16_model_2.pdb - 100 -86.711 10.671 0.083 17.731 18.297 0.097 10.352 19 16 2 38.109 221.747 36.808 1414.090 0.000 0.000 0.000 3.758 1298.520 -293.222 45.301 0.000 0.000 0.000 -290.748 -35.635 0.000 0.000 +../../11_seletopclusts/cluster_9_model_5.pdb - 101 -85.357 10.733 0.111 18.264 17.417 0.103 10.844 18 9 5 8.479 226.446 37.226 1153.120 0.000 0.000 0.000 -17.480 1297.140 -174.859 48.097 0.000 0.000 0.000 -200.134 -33.753 0.000 0.000 +../../11_seletopclusts/cluster_18_model_2.pdb - 102 -85.248 10.570 0.083 18.952 18.049 0.090 10.059 16 18 2 46.309 224.787 38.813 1428.480 0.000 0.000 0.000 -5.367 1305.970 -283.604 46.630 0.000 0.000 0.000 -265.087 -27.791 0.000 0.000 +../../11_seletopclusts/cluster_13_model_3.pdb - 103 -85.235 4.819 0.250 15.554 11.470 0.189 5.457 14 13 3 52.158 214.458 36.288 1294.030 0.000 0.000 0.000 -7.578 1287.170 -271.060 43.533 0.000 0.000 0.000 -247.563 -28.661 0.000 0.000 +../../11_seletopclusts/cluster_8_model_8.pdb - 104 -85.179 9.483 0.056 16.469 16.912 0.097 8.799 10 8 8 9.576 220.093 36.377 1298.380 0.000 0.000 0.000 -8.499 1292.140 -240.029 43.909 0.000 0.000 0.000 -260.085 -29.632 0.000 0.000 +../../11_seletopclusts/cluster_11_model_5.pdb - 105 -84.778 9.030 0.083 15.291 15.386 0.115 8.721 17 11 5 66.503 214.664 36.610 1526.940 0.000 0.000 0.000 -11.898 1304.170 -205.885 42.267 0.000 0.000 0.000 -177.736 -38.354 0.000 0.000 +../../11_seletopclusts/cluster_13_model_4.pdb - 106 -84.693 5.588 0.194 18.597 14.103 0.145 6.124 14 13 4 2.131 207.060 37.238 1245.650 0.000 0.000 0.000 0.209 1289.420 -295.348 43.465 0.000 0.000 0.000 -319.263 -26.046 0.000 0.000 +../../11_seletopclusts/cluster_12_model_6.pdb - 107 -84.442 5.835 0.083 9.954 10.561 0.189 5.472 3 12 6 38.465 223.854 38.656 1129.620 0.000 0.000 0.000 -13.508 1312.570 -291.955 44.217 0.000 0.000 0.000 -269.879 -16.389 0.000 0.000 +../../11_seletopclusts/cluster_13_model_5.pdb - 108 -84.265 3.636 0.250 11.369 9.347 0.251 3.704 14 13 5 34.075 213.645 36.661 1337.720 0.000 0.000 0.000 -9.198 1298.770 -299.420 43.434 0.000 0.000 0.000 -283.935 -18.590 0.000 0.000 +../../11_seletopclusts/cluster_12_model_7.pdb - 109 -84.200 5.858 0.083 10.040 10.776 0.187 5.431 3 12 7 76.327 214.905 36.503 1144.100 0.000 0.000 0.000 -11.052 1295.470 -356.138 42.216 0.000 0.000 0.000 -289.364 -9.553 0.000 0.000 +../../11_seletopclusts/cluster_14_model_7.pdb - 110 -83.398 6.065 0.167 13.365 11.224 0.171 6.370 9 14 7 11.357 216.572 36.566 1492.630 0.000 0.000 0.000 -8.288 1295.340 -225.552 44.385 0.000 0.000 0.000 -245.331 -31.135 0.000 0.000 +../../11_seletopclusts/cluster_12_model_8.pdb - 111 -82.601 6.409 0.028 10.908 11.716 0.153 5.861 3 12 8 6.377 220.526 38.852 1155.830 0.000 0.000 0.000 -9.464 1310.610 -294.980 45.720 0.000 0.000 0.000 -303.382 -14.779 0.000 0.000 +../../11_seletopclusts/cluster_18_model_3.pdb - 112 -82.299 10.168 0.083 17.108 17.009 0.101 9.581 16 18 3 63.065 216.895 37.908 1393.190 0.000 0.000 0.000 2.000 1300.590 -310.458 44.184 0.000 0.000 0.000 -275.906 -28.513 0.000 0.000 +../../11_seletopclusts/cluster_15_model_3.pdb - 113 -82.208 6.029 0.000 10.202 12.869 0.156 4.912 20 15 3 29.727 229.778 37.522 1123.940 0.000 0.000 0.000 6.007 1293.820 -383.867 47.433 0.000 0.000 0.000 -368.554 -14.414 0.000 0.000 +../../11_seletopclusts/cluster_6_model_3.pdb - 114 -82.080 2.171 0.556 6.085 4.914 0.513 2.252 21 6 3 49.222 218.893 37.355 1214.710 0.000 0.000 0.000 -8.146 1294.900 -305.697 49.192 0.000 0.000 0.000 -274.191 -17.716 0.000 0.000 +../../11_seletopclusts/cluster_12_model_9.pdb - 115 -82.016 7.228 0.111 12.541 13.265 0.156 6.834 3 12 9 41.645 215.369 35.974 1035.500 0.000 0.000 0.000 -10.998 1291.120 -340.287 42.694 0.000 0.000 0.000 -305.766 -7.125 0.000 0.000 +../../11_seletopclusts/cluster_5_model_10.pdb - 116 -81.980 9.696 0.083 17.367 16.064 0.100 9.791 4 5 10 39.162 211.217 37.828 1115.060 0.000 0.000 0.000 2.741 1308.660 -381.294 44.235 0.000 0.000 0.000 -354.511 -12.379 0.000 0.000 +../../11_seletopclusts/cluster_12_model_10.pdb - 117 -81.844 5.879 0.083 10.217 10.859 0.185 5.448 3 12 10 8.619 218.139 38.020 1119.900 0.000 0.000 0.000 -9.301 1296.810 -311.884 46.129 0.000 0.000 0.000 -314.294 -11.029 0.000 0.000 +../../11_seletopclusts/cluster_16_model_3.pdb - 118 -81.441 10.615 0.083 17.837 18.255 0.096 10.346 19 16 3 40.999 225.740 37.054 1505.600 0.000 0.000 0.000 -3.785 1290.800 -206.189 49.517 0.000 0.000 0.000 -205.708 -40.518 0.000 0.000 +../../11_seletopclusts/cluster_13_model_6.pdb - 119 -80.839 3.984 0.194 12.646 10.035 0.210 4.113 14 13 6 45.859 216.892 37.021 1332.870 0.000 0.000 0.000 -12.702 1285.470 -213.826 42.747 0.000 0.000 0.000 -197.925 -29.958 0.000 0.000 +../../11_seletopclusts/cluster_14_model_8.pdb - 120 -80.838 5.826 0.139 13.106 10.804 0.166 6.188 9 14 8 16.686 227.759 37.946 1512.630 0.000 0.000 0.000 -1.487 1295.990 -326.075 49.425 0.000 0.000 0.000 -325.193 -15.804 0.000 0.000 +../../11_seletopclusts/cluster_13_model_7.pdb - 121 -80.502 5.592 0.222 17.940 13.539 0.158 6.185 14 13 7 40.413 210.168 38.560 1207.970 0.000 0.000 0.000 -2.928 1273.110 -282.026 42.495 0.000 0.000 0.000 -266.823 -25.210 0.000 0.000 +../../11_seletopclusts/cluster_17_model_1.pdb - 122 -80.003 8.613 0.083 14.391 15.113 0.124 7.991 6 17 1 41.993 223.129 40.188 1331.880 0.000 0.000 0.000 -5.902 1295.990 -325.627 44.084 0.000 0.000 0.000 -296.809 -13.175 0.000 0.000 +../../11_seletopclusts/cluster_13_model_8.pdb - 123 -79.689 3.944 0.222 11.674 9.513 0.232 3.947 14 13 8 10.087 233.381 39.297 1315.000 0.000 0.000 0.000 -10.864 1281.600 -204.371 47.943 0.000 0.000 0.000 -223.243 -28.959 0.000 0.000 +../../11_seletopclusts/cluster_17_model_2.pdb - 124 -78.269 9.106 0.111 15.081 15.393 0.126 8.758 6 17 2 1.672 216.245 37.644 1149.530 0.000 0.000 0.000 -1.740 1303.610 -237.171 42.604 0.000 0.000 0.000 -264.761 -29.261 0.000 0.000 +../../11_seletopclusts/cluster_8_model_9.pdb - 125 -77.981 9.509 0.056 15.971 16.835 0.100 8.749 10 8 9 5.040 214.246 37.509 1193.750 0.000 0.000 0.000 -4.204 1286.390 -212.175 45.321 0.000 0.000 0.000 -238.980 -31.846 0.000 0.000 +../../11_seletopclusts/cluster_17_model_3.pdb - 126 -77.643 8.234 0.139 13.962 15.103 0.147 7.449 6 17 3 12.212 219.892 37.300 1373.040 0.000 0.000 0.000 3.722 1295.220 -293.976 44.749 0.000 0.000 0.000 -305.555 -23.791 0.000 0.000 +../../11_seletopclusts/cluster_6_model_4.pdb - 127 -77.071 2.172 0.528 5.597 4.855 0.516 2.202 21 6 4 60.138 223.363 38.638 1215.100 0.000 0.000 0.000 -9.521 1307.640 -290.265 46.633 0.000 0.000 0.000 -245.637 -15.511 0.000 0.000 +../../11_seletopclusts/cluster_17_model_4.pdb - 128 -76.470 8.702 0.056 14.803 15.447 0.111 8.093 6 17 4 47.112 214.242 36.587 1272.550 0.000 0.000 0.000 -4.490 1300.830 -321.763 44.816 0.000 0.000 0.000 -286.990 -12.338 0.000 0.000 +../../11_seletopclusts/cluster_1_model_10.pdb - 129 -76.331 1.851 0.444 4.151 3.514 0.549 1.922 5 1 10 35.810 212.028 35.743 1338.040 0.000 0.000 0.000 -7.576 1279.060 -232.498 43.437 0.000 0.000 0.000 -222.524 -25.836 0.000 0.000 +../../11_seletopclusts/cluster_10_model_8.pdb - 130 -76.280 10.958 0.139 19.013 18.158 0.108 10.740 7 10 8 48.408 218.431 39.166 1463.550 0.000 0.000 0.000 -10.811 1296.820 -241.111 42.306 0.000 0.000 0.000 -214.790 -22.088 0.000 0.000 +../../11_seletopclusts/cluster_14_model_9.pdb - 131 -75.676 6.243 0.056 14.017 11.405 0.126 6.656 9 14 9 46.350 214.612 37.508 1345.430 0.000 0.000 0.000 -4.894 1293.660 -288.961 43.632 0.000 0.000 0.000 -260.236 -17.625 0.000 0.000 +../../11_seletopclusts/cluster_16_model_4.pdb - 132 -75.272 10.447 0.083 18.038 17.832 0.095 10.235 19 16 4 94.242 226.769 39.364 1404.100 0.000 0.000 0.000 5.585 1300.030 -334.821 45.407 0.000 0.000 0.000 -263.895 -23.317 0.000 0.000 +../../11_seletopclusts/cluster_8_model_10.pdb - 133 -74.912 9.471 0.056 16.832 17.282 0.094 8.682 10 8 10 7.413 216.492 38.945 1181.920 0.000 0.000 0.000 -3.800 1301.810 -196.453 44.460 0.000 0.000 0.000 -221.603 -32.563 0.000 0.000 +../../11_seletopclusts/cluster_17_model_5.pdb - 134 -74.051 8.480 0.111 13.949 14.971 0.137 7.855 6 17 5 43.507 213.619 37.613 1203.840 0.000 0.000 0.000 2.721 1291.880 -358.861 41.834 0.000 0.000 0.000 -324.705 -9.351 0.000 0.000 +../../11_seletopclusts/cluster_10_model_9.pdb - 135 -73.893 10.865 0.139 18.665 17.958 0.110 10.690 7 10 9 33.082 226.367 38.374 1470.280 0.000 0.000 0.000 -14.921 1292.310 -165.652 46.817 0.000 0.000 0.000 -161.721 -29.150 0.000 0.000 +../../11_seletopclusts/cluster_20_model_1.pdb - 136 -73.315 5.289 0.111 16.108 13.982 0.134 4.931 15 20 1 44.719 228.004 37.024 1367.820 0.000 0.000 0.000 -12.160 1303.500 -184.446 44.627 0.000 0.000 0.000 -168.464 -28.738 0.000 0.000 +../../11_seletopclusts/cluster_17_model_6.pdb - 137 -72.929 8.560 0.056 14.157 14.837 0.117 8.009 6 17 6 78.280 217.421 36.351 1292.070 0.000 0.000 0.000 -6.499 1287.250 -310.633 43.314 0.000 0.000 0.000 -244.484 -12.131 0.000 0.000 +../../11_seletopclusts/cluster_10_model_10.pdb - 138 -71.876 10.747 0.083 17.726 17.368 0.096 10.552 7 10 10 63.303 222.979 36.082 1427.500 0.000 0.000 0.000 -17.366 1304.850 -162.919 48.163 0.000 0.000 0.000 -127.873 -28.257 0.000 0.000 +../../11_seletopclusts/cluster_21_model_1.pdb - 139 -69.888 12.463 0.028 29.665 24.782 0.039 12.247 13 21 1 6.918 221.626 38.271 1057.630 0.000 0.000 0.000 -6.645 1296.690 -178.019 48.836 0.000 0.000 0.000 -199.432 -28.331 0.000 0.000 +../../11_seletopclusts/cluster_20_model_2.pdb - 140 -69.263 5.193 0.083 14.949 13.452 0.135 4.772 15 20 2 100.334 231.995 38.797 1313.330 0.000 0.000 0.000 -14.434 1303.210 -198.369 44.081 0.000 0.000 0.000 -123.223 -25.188 0.000 0.000 +../../11_seletopclusts/cluster_17_model_7.pdb - 141 -67.168 8.820 0.139 14.441 15.287 0.141 8.317 6 17 7 73.844 209.137 37.244 1173.870 0.000 0.000 0.000 -1.474 1302.010 -220.569 42.082 0.000 0.000 0.000 -175.689 -28.964 0.000 0.000 +../../11_seletopclusts/cluster_14_model_10.pdb - 142 -67.045 6.385 0.139 14.878 11.998 0.146 6.814 9 14 10 17.300 215.918 36.603 1395.080 0.000 0.000 0.000 0.111 1284.700 -255.758 45.341 0.000 0.000 0.000 -256.193 -17.734 0.000 0.000 +../../11_seletopclusts/cluster_17_model_8.pdb - 143 -66.741 8.244 0.111 13.672 14.677 0.141 7.668 6 17 8 72.492 224.042 38.751 1142.830 0.000 0.000 0.000 2.806 1298.770 -333.991 45.258 0.000 0.000 0.000 -271.497 -9.998 0.000 0.000 +../../11_seletopclusts/cluster_19_model_2.pdb - 144 -66.487 4.523 0.167 9.729 7.971 0.233 4.802 11 19 2 93.089 216.401 34.671 1438.620 0.000 0.000 0.000 1.525 1271.680 -205.641 44.212 0.000 0.000 0.000 -148.745 -36.193 0.000 0.000 +../../11_seletopclusts/cluster_15_model_4.pdb - 145 -66.171 6.064 0.000 10.319 13.018 0.154 4.976 20 15 4 62.821 226.194 36.685 997.521 0.000 0.000 0.000 7.087 1310.420 -296.774 46.935 0.000 0.000 0.000 -254.139 -20.185 0.000 0.000 +../../11_seletopclusts/cluster_19_model_3.pdb - 146 -65.729 5.202 0.139 10.686 9.130 0.201 5.470 11 19 3 27.850 218.269 38.014 1216.430 0.000 0.000 0.000 3.100 1297.980 -235.778 44.863 0.000 0.000 0.000 -232.387 -24.459 0.000 0.000 +../../11_seletopclusts/cluster_17_model_9.pdb - 147 -65.615 8.886 0.083 14.410 15.447 0.123 8.330 6 17 9 45.535 228.184 41.228 1044.200 0.000 0.000 0.000 -3.157 1292.100 -200.449 45.672 0.000 0.000 0.000 -181.835 -26.921 0.000 0.000 +../../11_seletopclusts/cluster_21_model_2.pdb - 148 -64.842 12.138 0.028 29.732 25.135 0.039 11.690 13 21 2 38.072 209.989 36.275 1020.620 0.000 0.000 0.000 3.792 1288.680 -266.454 44.234 0.000 0.000 0.000 -247.532 -19.150 0.000 0.000 +../../11_seletopclusts/cluster_19_model_4.pdb - 149 -64.264 4.699 0.167 9.523 8.576 0.234 4.737 11 19 4 82.855 232.965 36.686 1500.240 0.000 0.000 0.000 -0.450 1283.820 -221.571 50.070 0.000 0.000 0.000 -166.502 -27.786 0.000 0.000 +../../11_seletopclusts/cluster_20_model_3.pdb - 150 -63.624 5.618 0.083 16.521 14.570 0.120 5.272 15 20 3 43.304 224.542 38.796 1235.000 0.000 0.000 0.000 -11.291 1309.620 -147.626 45.351 0.000 0.000 0.000 -131.459 -27.138 0.000 0.000 +../../11_seletopclusts/cluster_19_model_5.pdb - 151 -62.927 5.064 0.167 9.974 9.528 0.223 4.948 11 19 5 43.774 232.105 38.977 1218.220 0.000 0.000 0.000 -1.441 1305.680 -226.468 50.599 0.000 0.000 0.000 -203.263 -20.569 0.000 0.000 +../../11_seletopclusts/cluster_19_model_6.pdb - 152 -61.501 5.232 0.083 10.468 9.969 0.186 5.049 11 19 6 71.113 215.088 36.062 1326.360 0.000 0.000 0.000 3.044 1305.400 -237.845 43.431 0.000 0.000 0.000 -190.819 -24.088 0.000 0.000 +../../11_seletopclusts/cluster_20_model_4.pdb - 153 -60.839 5.235 0.028 15.769 13.970 0.110 4.692 15 20 4 51.650 231.705 38.385 1295.560 0.000 0.000 0.000 -17.277 1285.480 -189.508 46.568 0.000 0.000 0.000 -148.683 -10.825 0.000 0.000 +../../11_seletopclusts/cluster_21_model_3.pdb - 154 -59.525 11.691 0.056 23.774 21.439 0.062 11.201 13 21 3 32.788 224.385 37.456 956.349 0.000 0.000 0.000 -4.846 1287.360 -203.504 47.800 0.000 0.000 0.000 -187.973 -17.257 0.000 0.000 +../../11_seletopclusts/cluster_19_model_7.pdb - 155 -59.271 4.674 0.083 8.732 8.710 0.221 4.454 11 19 7 111.411 227.256 39.862 1409.700 0.000 0.000 0.000 5.716 1312.180 -262.358 46.024 0.000 0.000 0.000 -174.604 -23.657 0.000 0.000 +../../11_seletopclusts/cluster_17_model_10.pdb - 156 -57.984 8.696 0.028 14.901 15.709 0.101 8.042 6 17 10 107.322 209.470 37.705 1139.860 0.000 0.000 0.000 2.958 1315.750 -303.342 44.305 0.000 0.000 0.000 -207.026 -11.005 0.000 0.000 +../../11_seletopclusts/cluster_20_model_5.pdb - 157 -55.634 5.788 0.056 17.289 14.795 0.104 5.303 15 20 5 39.909 221.044 37.730 1218.610 0.000 0.000 0.000 -4.333 1291.720 -144.880 48.431 0.000 0.000 0.000 -131.288 -26.317 0.000 0.000 +../../11_seletopclusts/cluster_19_model_8.pdb - 158 -55.314 4.844 0.111 9.253 9.109 0.219 4.667 11 19 8 79.697 211.228 35.675 1192.870 0.000 0.000 0.000 2.603 1301.040 -240.371 45.238 0.000 0.000 0.000 -178.486 -17.813 0.000 0.000 +../../11_seletopclusts/cluster_19_model_9.pdb - 159 -53.111 5.271 0.139 10.208 9.924 0.208 5.127 11 19 9 100.086 213.512 35.819 1160.310 0.000 0.000 0.000 3.425 1281.930 -225.015 42.192 0.000 0.000 0.000 -146.471 -21.542 0.000 0.000 +../../11_seletopclusts/cluster_18_model_4.pdb - 160 -52.824 10.743 0.111 20.284 18.556 0.093 10.319 16 18 4 75.906 211.170 39.942 1123.130 0.000 0.000 0.000 -5.179 1291.250 -208.967 46.821 0.000 0.000 0.000 -146.504 -13.443 0.000 0.000 +../../11_seletopclusts/cluster_21_model_4.pdb - 161 -52.722 12.035 0.056 27.796 23.665 0.052 11.702 13 21 4 17.791 229.395 39.545 917.604 0.000 0.000 0.000 3.042 1296.520 -214.460 47.523 0.000 0.000 0.000 -211.321 -14.651 0.000 0.000 +../../11_seletopclusts/cluster_21_model_5.pdb - 162 -52.308 12.509 0.028 30.184 25.112 0.038 12.255 13 21 5 68.962 228.071 38.730 1032.570 0.000 0.000 0.000 -4.327 1299.570 -173.090 47.220 0.000 0.000 0.000 -124.387 -20.259 0.000 0.000 +../../11_seletopclusts/cluster_18_model_5.pdb - 163 -51.722 10.684 0.083 19.992 18.299 0.085 10.321 16 18 5 78.590 220.451 35.340 1055.950 0.000 0.000 0.000 -9.416 1284.220 -186.685 44.518 0.000 0.000 0.000 -120.923 -12.827 0.000 0.000 +../../11_seletopclusts/cluster_21_model_6.pdb - 164 -49.546 12.544 0.028 28.993 24.326 0.040 12.375 13 21 6 62.781 226.070 37.897 859.600 0.000 0.000 0.000 -3.698 1280.210 -167.099 46.328 0.000 0.000 0.000 -123.023 -18.706 0.000 0.000 +../../11_seletopclusts/cluster_21_model_7.pdb - 165 -40.914 11.771 0.056 25.661 22.664 0.057 11.276 13 21 7 95.046 214.796 37.004 884.145 0.000 0.000 0.000 8.924 1290.540 -272.174 47.358 0.000 0.000 0.000 -182.036 -4.908 0.000 0.000 +../../11_seletopclusts/cluster_20_model_6.pdb - 166 -38.411 6.644 0.028 20.735 17.507 0.073 6.438 15 20 6 97.726 223.186 36.041 1006.210 0.000 0.000 0.000 -14.469 1287.060 -69.477 44.537 0.000 0.000 0.000 8.429 -19.820 0.000 0.000 +../../11_seletopclusts/cluster_21_model_8.pdb - 167 -36.077 12.198 0.028 27.718 23.792 0.043 11.815 13 21 8 55.891 236.254 41.948 935.255 0.000 0.000 0.000 -2.794 1299.970 -167.053 51.575 0.000 0.000 0.000 -116.624 -5.461 0.000 0.000 diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/desolv_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/desolv_clt.html new file mode 100644 index 000000000..792cdb39f --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/desolv_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_air.html new file mode 100644 index 000000000..9353c5f0b --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_clt.html new file mode 100644 index 000000000..e235e527b --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_desolv.html new file mode 100644 index 000000000..8118695c7 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_elec.html new file mode 100644 index 000000000..cf9937f23 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_score.html new file mode 100644 index 000000000..0534498a3 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_vdw.html new file mode 100644 index 000000000..8972b5fd5 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/dockq_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/elec_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/elec_clt.html new file mode 100644 index 000000000..f2631da92 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/elec_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_air.html new file mode 100644 index 000000000..d6efbb39e --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_clt.html new file mode 100644 index 000000000..2ec145bea --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_desolv.html new file mode 100644 index 000000000..766b6240d --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_elec.html new file mode 100644 index 000000000..9072abefe --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_score.html new file mode 100644 index 000000000..fee4d29f1 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_vdw.html new file mode 100644 index 000000000..7a4aeaacd --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/fnat_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_air.html new file mode 100644 index 000000000..e82ea2e8e --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_clt.html new file mode 100644 index 000000000..0f09cf31a --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_desolv.html new file mode 100644 index 000000000..00a96beea --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_elec.html new file mode 100644 index 000000000..201d3f941 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_score.html new file mode 100644 index 000000000..a11407024 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_vdw.html new file mode 100644 index 000000000..dc34d0a86 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/ilrmsd_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_air.html new file mode 100644 index 000000000..983aa6717 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_clt.html new file mode 100644 index 000000000..0362cf7f7 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_desolv.html new file mode 100644 index 000000000..c0e218ec0 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_elec.html new file mode 100644 index 000000000..a503d106f --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_score.html new file mode 100644 index 000000000..857635553 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_vdw.html new file mode 100644 index 000000000..1b86cd68d --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/irmsd_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_air.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_air.html new file mode 100644 index 000000000..c81eac210 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_air.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_clt.html new file mode 100644 index 000000000..894ca53e3 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_desolv.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_desolv.html new file mode 100644 index 000000000..c3b12c201 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_desolv.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_elec.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_elec.html new file mode 100644 index 000000000..665b1bb81 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_elec.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_score.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_score.html new file mode 100644 index 000000000..a024135a5 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_score.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_vdw.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_vdw.html new file mode 100644 index 000000000..1eed08460 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/lrmsd_vdw.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/report.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/report.html new file mode 100644 index 000000000..01613986b --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/report.html @@ -0,0 +1,94 @@ +Analysis report of step 12_caprieval

Analysis report of step 12_caprieval


+
+
The "Other" cluster is not a real cluster it containsall structures that are not in the top 10 clusters.
+ +
+
+ + +
+
+ + +
+
+
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/score_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/score_clt.html new file mode 100644 index 000000000..052508565 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/score_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/summary.tgz b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/summary.tgz new file mode 100644 index 000000000..2fe16dc45 Binary files /dev/null and b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/summary.tgz differ diff --git a/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/vdw_clt.html b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/vdw_clt.html new file mode 100644 index 000000000..3ba4787d6 --- /dev/null +++ b/education/HADDOCK3/HADDOCK3-protein-protein/plots/scenario2/vdw_clt.html @@ -0,0 +1,23 @@ + +
+ + +
+
+ + +
+ \ No newline at end of file diff --git a/education/HADDOCK3/index.md b/education/HADDOCK3/index.md index 9b4d1590f..1e23e64c1 100644 --- a/education/HADDOCK3/index.md +++ b/education/HADDOCK3/index.md @@ -41,6 +41,9 @@ _Note that HADDOCK3 is still in heavy development and as such the software is ev # System-specific basic tutorials +* [**Protein-Protein docking**](/education/HADDOCK3/HADDOCK3-protein-protein): + This tutorial describes a basic protein-protein docking case using HADDOCK3. The interface information for the docking is derived from NMR chemical shift perturbation data. This tutorial requires basic Linux expertise. + * [**Antibody-antigen docking**](/education/HADDOCK3/HADDOCK3-antibody-antigen): This tutorial demonstrates the use of HADDOCK3 for predicting the structure of an antibody-antigen complex using information about the hypervariable loops of the antibody and a loose definition of the epitope determined through NMR experiments.