-
Notifications
You must be signed in to change notification settings - Fork 13.7k
Closed
Labels
Description
Name and Version
myusername@Mac bin % ./llama-server --version
version: 4641 (9f4cc8f)
built with Apple clang version 16.0.0 (clang-1600.0.26.4) for arm64-apple-darwin24.3.0
Operating systems
Mac
GGML backends
Metal
Hardware
Apple M2 Max
Models
All models
Problem description & steps to reproduce
I needed a static build of llama-server, so I cloned the repository and built it locally via cmake using this command: cmake -B build -DBUILD_SHARED_LIBS=OFF; cmake --build build --config Release -j 12 -t "llama-server".
I then proceeded to test the binary with a number of models, but the server never started successfully, citing a failure initializing the Metal backend. The output can be found below in the relevant log output section.
First Bad Commit
No response
Relevant log output
(base) bj@Mac bin % ./llama-server --model /Users/bj/Library/Application\ Support/Magic\ Sorter/Sorted\ Land/Computer\ DN/AI/Text\ Generation/Models/LLaMa\ 3.2/gguf/Meta-Llama-3.2-1B-Instruct-Q8_0.gguf
build: 4641 (9f4cc8f8) with Apple clang version 16.0.0 (clang-1600.0.26.4) for arm64-apple-darwin24.3.0
system info: n_threads = 8, n_threads_batch = 8, total_threads = 12
system_info: n_threads = 8 (n_threads_batch = 8) / 12 | Metal : EMBED_LIBRARY = 1 | CPU : NEON = 1 | ARM_FMA = 1 | FP16_VA = 1 | MATMUL_INT8 = 1 | DOTPROD = 1 | MATMUL_INT8 = 1 | ACCELERATE = 1 | AARCH64_REPACK = 1 |
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 11
main: loading model
srv load_model: loading model '/Users/bj/Library/Application Support/Magic Sorter/Sorted Land/Computer DN/AI/Text Generation/Models/LLaMa 3.2/gguf/Meta-Llama-3.2-1B-Instruct-Q8_0.gguf'
llama_model_load_from_file_impl: using device Metal (Apple M2 Max) - 24575 MiB free
llama_model_loader: loaded meta data with 30 key-value pairs and 147 tensors from /Users/bj/Library/Application Support/Magic Sorter/Sorted Land/Computer DN/AI/Text Generation/Models/LLaMa 3.2/gguf/Meta-Llama-3.2-1B-Instruct-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Llama 3.2 1B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Llama-3.2
llama_model_loader: - kv 5: general.size_label str = 1B
llama_model_loader: - kv 6: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 7: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv 8: llama.block_count u32 = 16
llama_model_loader: - kv 9: llama.context_length u32 = 131072
llama_model_loader: - kv 10: llama.embedding_length u32 = 2048
llama_model_loader: - kv 11: llama.feed_forward_length u32 = 8192
llama_model_loader: - kv 12: llama.attention.head_count u32 = 32
llama_model_loader: - kv 13: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 14: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 15: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 16: llama.attention.key_length u32 = 64
llama_model_loader: - kv 17: llama.attention.value_length u32 = 64
llama_model_loader: - kv 18: general.file_type u32 = 7
llama_model_loader: - kv 19: llama.vocab_size u32 = 128256
llama_model_loader: - kv 20: llama.rope.dimension_count u32 = 64
llama_model_loader: - kv 21: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 22: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 23: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 24: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 25: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 28: tokenizer.chat_template str = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv 29: general.quantization_version u32 = 2
llama_model_loader: - type f32: 34 tensors
llama_model_loader: - type q8_0: 113 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 1.22 GiB (8.50 BPW)
load: special tokens cache size = 256
load: token to piece cache size = 0.7999 MB
print_info: arch = llama
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 2048
print_info: n_layer = 16
print_info: n_head = 32
print_info: n_head_kv = 8
print_info: n_rot = 64
print_info: n_swa = 0
print_info: n_embd_head_k = 64
print_info: n_embd_head_v = 64
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 8192
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = linear
print_info: freq_base_train = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 1B
print_info: model params = 1.24 B
print_info: general.name = Llama 3.2 1B Instruct
print_info: vocab type = BPE
print_info: n_vocab = 128256
print_info: n_merges = 280147
print_info: BOS token = 128000 '<|begin_of_text|>'
print_info: EOS token = 128009 '<|eot_id|>'
print_info: EOT token = 128009 '<|eot_id|>'
print_info: EOM token = 128008 '<|eom_id|>'
print_info: LF token = 198 'Ċ'
print_info: EOG token = 128008 '<|eom_id|>'
print_info: EOG token = 128009 '<|eot_id|>'
print_info: max token length = 256
load_tensors: offloading 16 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: Metal_Mapped model buffer size = 1252.43 MiB
load_tensors: CPU_Mapped model buffer size = 266.16 MiB
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 4096
llama_init_from_model: n_ctx_per_seq = 4096
llama_init_from_model: n_batch = 2048
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 0
llama_init_from_model: freq_base = 500000.0
llama_init_from_model: freq_scale = 1
llama_init_from_model: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M2 Max
ggml_metal_init: picking default device: Apple M2 Max
ggml_metal_init: using embedded metal library
ggml_metal_init: error: Error Domain=MTLLibraryErrorDomain Code=3 "program_source:61:35: error: unknown type name 'block_q4_0'
void dequantize_q4_0(device const block_q4_0 * xb, short il, thread type4x4 & reg) {
^
program_source:80:38: error: unknown type name 'block_q4_0'
void dequantize_q4_0_t4(device const block_q4_0 * xb, short il, thread type4 & reg) {
^
program_source:95:35: error: unknown type name 'block_q4_1'
void dequantize_q4_1(device const block_q4_1 * xb, short il, thread type4x4 & reg) {
^
program_source:114:38: error: unknown type name 'block_q4_1'
void dequantize_q4_1_t4(device const block_q4_1 * xb, short il, thread type4 & reg) {
^
program_source:129:35: error: unknown type name 'block_q5_0'
void dequantize_q5_0(device const block_q5_0 * xb, short il, thread type4x4 & reg) {
^
program_source:161:38: error: unknown type name 'block_q5_0'
void dequantize_q5_0_t4(device const block_q5_0 * xb, short il, thread type4 & reg) {
^
program_source:191:35: error: unknown type name 'block_q5_1'
void dequantize_q5_1(device const block_q5_1 * xb, short il, thread type4x4 & reg) {
^
program_source:223:38: error: unknown type name 'block_q5_1'
void dequantize_q5_1_t4(device const block_q5_1 * xb, short il, thread type4 & reg) {
^
program_source:253:35: error: unknown type name 'block_q8_0'
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
^
program_source:267:38: error: unknown type name 'block_q8_0'
void dequantize_q8_0_t4(device const block_q8_0 *xb, short il, thread type4 & reg) {
^
program_source:277:35: error: unknown type name 'block_q2_K'
void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
^
program_source:296:35: error: unknown type name 'block_q3_K'
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
^
program_source:330:35: error: unknown type name 'block_q4_K'
void dequantize_q4_K(device const block_q4_K * xb, short il, thread type4x4 & reg) {
^
program_source:349:35: error: unknown type name 'block_q5_K'
void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
^
program_source:372:35: error: unknown type name 'block_q6_K'
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
^
program_source:396:38: error: unknown type name 'block_iq2_xxs'
void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) {
^
program_source:408:52: error: use of undeclared identifier 'iq2xxs_grid'
constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
^
program_source:409:21: error: use of undeclared identifier 'ksigns_iq2xs'
uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127];
^
program_source:411:49: error: use of undeclared identifier 'kmask_iq2xs'
reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
^
program_source:413:33: error: use of undeclared identifier 'iq2xxs_grid'
grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
^
program_source:414:13: error: use of undeclared identifier 'ksigns_iq2xs'
signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127];
^
program_source:416:51: error: use of undeclared identifier 'kmask_iq2xs'
reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
^
program_source:421:37: error: unknown type name 'block_iq2_xs'
void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) {
^
program_source:429:52: error: use of undeclared identifier 'iq2xs_grid'
constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511));
^
program_source:430:21: error: use of undeclared identifier 'ksigns_iq2xs'
uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9];
^
.
.
.
More similar errors here (could not include it in the issue due to character limit)
.
.
.
^
program_source:6634:82: error: explicit instantiation of 'kernel_mul_mv_id' does not refer to a function template, variable template, member function, member class, or static data member
template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>;
^
program_source:6547:13: note: explicit instantiation refers here
kernel void kernel_mul_mv_id(
^
}
ggml_backend_metal_device_init: error: failed to allocate context
llama_init_from_model: failed to initialize Metal backend
common_init_from_params: failed to create context with model '/Users/bj/Library/Application Support/Magic Sorter/Sorted Land/Computer DN/AI/Text Generation/Models/LLaMa 3.2/gguf/Meta-Llama-3.2-1B-Instruct-Q8_0.gguf'
srv load_model: failed to load model, '/Users/bj/Library/Application Support/Magic Sorter/Sorted Land/Computer DN/AI/Text Generation/Models/LLaMa 3.2/gguf/Meta-Llama-3.2-1B-Instruct-Q8_0.gguf'
main: exiting due to model loading errorEmanoid, urosch and dannoll