@@ -5653,8 +5653,12 @@ static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, siz
56535653 ggml_vk_queue_command_pools_cleanup(dst->device);
56545654}
56555655
5656- static uint32_t ggml_vk_guess_split_k(ggml_backend_vk_context * ctx, uint32_t m, uint32_t n, uint32_t k, const vk_pipeline& pipeline) {
5657- VK_LOG_DEBUG("ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")");
5656+ static uint32_t ggml_vk_guess_split_k(ggml_backend_vk_context * ctx, uint32_t m, uint32_t n, uint32_t k, bool disable_split_k, const vk_pipeline& pipeline) {
5657+ VK_LOG_DEBUG("ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ", " << disable_split_k << ")");
5658+
5659+ if (disable_split_k) {
5660+ return 1;
5661+ }
56585662
56595663 uint32_t split_k = 1;
56605664 if (ctx->device->shader_core_count != 0 && m >= pipeline->wg_denoms[0] && n >= pipeline->wg_denoms[1]) {
@@ -5979,7 +5983,7 @@ static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& sub
59795983 ggml_vk_sync_buffers(ctx, subctx);
59805984}
59815985
5982- static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
5986+ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool disable_split_k, bool dryrun = false) {
59835987 VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << ggml_type_name(src0->type) << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
59845988 std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << ggml_type_name(src1->type) << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
59855989 std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << ggml_type_name(dst->type) << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
@@ -5999,6 +6003,8 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
59996003
60006004 const uint64_t ne20 = dst->ne[0];
60016005 const uint64_t ne21 = dst->ne[1];
6006+ const uint32_t stride_d = dst->nb[1] / ggml_type_size(dst->type);
6007+ const uint32_t stride_batch_d = stride_d*ne21;
60026008
60036009 const uint64_t r2 = ne12 / ne02;
60046010 const uint64_t r3 = ne13 / ne03;
@@ -6067,7 +6073,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
60676073 const int y_ne = padded_n * ne10;
60686074 const int d_ne = ne11 * ne01;
60696075
6070- const uint32_t split_k = ggml_vk_guess_split_k(ctx, ne01, ne11, ne10, pipeline);
6076+ const uint32_t split_k = ggml_vk_guess_split_k(ctx, ne01, ne11, ne10, disable_split_k, pipeline);
60716077
60726078 const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
60736079 const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
@@ -6226,13 +6232,16 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
62266232 y_sz_total = CEIL_DIV(y_sz_total, 144) * 144;
62276233 }
62286234
6235+ // No bounds checking is needed for dst. This is basically VK_WHOLE_SIZE but clamped to maxStorageBufferRange.
6236+ VkDeviceSize d_range = std::min(VkDeviceSize{d_D->size - d_buf_offset}, VkDeviceSize{ctx->device->properties.limits.maxStorageBufferRange});
6237+
62296238 // compute
62306239 ggml_vk_matmul(
62316240 ctx, subctx, pipeline,
62326241 { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz_total },
6233- { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k },
6242+ { d_D, d_buf_offset, d_range }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k },
62346243 ne01, ne11, ne10,
6235- ne10, ne10, ne01 , stride_batch_x, stride_batch_y, ne20*ne21 ,
6244+ ne10, ne10, stride_d , stride_batch_x, stride_batch_y, stride_batch_d ,
62366245 split_k, ne12*ne13, ne02, ne12, r2, r3, padded_n
62376246 ); // NOLINT
62386247
@@ -6712,7 +6721,34 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
67126721
67136722static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
67146723 VK_LOG_DEBUG("ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")");
6715- if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && dst->ne[1] == 1 &&
6724+
6725+ // Handle huge A matrix by splitting the M dimensions. This works well for convolution use cases
6726+ // where the M dimension is very large.
6727+ // Split_k doesn't work with M splitting.
6728+ const size_t nbytes = ggml_nbytes(src0);
6729+ const bool needs_split = nbytes > ctx->device->properties.limits.maxStorageBufferRange;
6730+ if (needs_split) {
6731+ // Choose the number of rows that can fit (and divide by two, to allow for any additional offsets)
6732+ const uint32_t M_split = ctx->device->properties.limits.maxStorageBufferRange / (2 * src0->nb[1]);
6733+ uint32_t m_offset = 0;
6734+ while (m_offset < dst->ne[0]) {
6735+ const uint32_t cur_M_size = std::min(M_split, (uint32_t)(dst->ne[0] - m_offset));
6736+ ggml_tensor dst2 = *dst;
6737+ ggml_tensor src02 = *src0;
6738+
6739+ dst2.view_src = dst->view_src ? dst->view_src : (ggml_tensor *)dst;
6740+ src02.view_src = src0->view_src ? src0->view_src : (ggml_tensor *)src0;
6741+
6742+ dst2.view_offs += m_offset * dst->nb[0];
6743+ src02.view_offs += m_offset * src0->nb[1];
6744+ dst2.ne[0] = cur_M_size;
6745+ src02.ne[1] = cur_M_size;
6746+
6747+ ggml_vk_mul_mat_q_f16(ctx, subctx, &src02, src1, &dst2, true, dryrun);
6748+
6749+ m_offset += cur_M_size;
6750+ }
6751+ } else if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && dst->ne[1] == 1 &&
67166752 // detect 0213 permutation, and batch size of 1
67176753 src0->nb[0] <= src0->nb[2] &&
67186754 src0->nb[2] <= src0->nb[1] &&
@@ -6732,7 +6768,7 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, c
67326768 (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type))) {
67336769 ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
67346770 } else {
6735- ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
6771+ ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, false, dryrun);
67366772 }
67376773}
67386774
0 commit comments