@@ -214,6 +214,7 @@ enum llm_arch {
214214 LLM_ARCH_GEMMA,
215215 LLM_ARCH_STARCODER2,
216216 LLM_ARCH_MAMBA,
217+ LLM_ARCH_COMMAND_R,
217218 LLM_ARCH_UNKNOWN,
218219};
219220
@@ -243,6 +244,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
243244 { LLM_ARCH_GEMMA, "gemma" },
244245 { LLM_ARCH_STARCODER2, "starcoder2" },
245246 { LLM_ARCH_MAMBA, "mamba" },
247+ { LLM_ARCH_COMMAND_R, "command-r" },
246248 { LLM_ARCH_UNKNOWN, "(unknown)" },
247249};
248250
@@ -267,6 +269,7 @@ enum llm_kv {
267269 LLM_KV_EXPERT_COUNT,
268270 LLM_KV_EXPERT_USED_COUNT,
269271 LLM_KV_POOLING_TYPE,
272+ LLM_KV_LOGIT_SCALE,
270273
271274 LLM_KV_ATTENTION_HEAD_COUNT,
272275 LLM_KV_ATTENTION_HEAD_COUNT_KV,
@@ -330,6 +333,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
330333 { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
331334 { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
332335 { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
336+ { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
333337
334338 { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
335339 { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@@ -836,6 +840,21 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
836840 { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
837841 },
838842 },
843+ {
844+ LLM_ARCH_COMMAND_R,
845+ {
846+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
847+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
848+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
849+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
850+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
851+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
852+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
853+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
854+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
855+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
856+ },
857+ },
839858 {
840859 LLM_ARCH_UNKNOWN,
841860 {
@@ -1610,6 +1629,7 @@ enum e_model {
16101629 MODEL_20B,
16111630 MODEL_30B,
16121631 MODEL_34B,
1632+ MODEL_35B,
16131633 MODEL_40B,
16141634 MODEL_65B,
16151635 MODEL_70B,
@@ -1656,6 +1676,7 @@ struct llama_hparams {
16561676
16571677 float f_clamp_kqv = 0.0f;
16581678 float f_max_alibi_bias = 0.0f;
1679+ float f_logit_scale = 0.0f;
16591680
16601681 bool causal_attn = true;
16611682 bool need_kq_pos = false;
@@ -3237,6 +3258,7 @@ static const char * llama_model_type_name(e_model type) {
32373258 case MODEL_20B: return "20B";
32383259 case MODEL_30B: return "30B";
32393260 case MODEL_34B: return "34B";
3261+ case MODEL_35B: return "35B";
32403262 case MODEL_40B: return "40B";
32413263 case MODEL_65B: return "65B";
32423264 case MODEL_70B: return "70B";
@@ -3628,6 +3650,14 @@ static void llm_load_hparams(
36283650 default: model.type = e_model::MODEL_UNKNOWN;
36293651 }
36303652 } break;
3653+ case LLM_ARCH_COMMAND_R:
3654+ {
3655+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
3656+ switch (hparams.n_layer) {
3657+ case 40: model.type = e_model::MODEL_35B; break;
3658+ default: model.type = e_model::MODEL_UNKNOWN;
3659+ }
3660+ } break;
36313661 default: (void)0;
36323662 }
36333663
@@ -3937,6 +3967,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
39373967 LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
39383968 LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
39393969 LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
3970+ LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
39403971 LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
39413972 LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
39423973 LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
@@ -4910,6 +4941,37 @@ static bool llm_load_tensors(
49104941 layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
49114942 }
49124943 } break;
4944+ case LLM_ARCH_COMMAND_R:
4945+ {
4946+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
4947+
4948+ // output
4949+ {
4950+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
4951+ // init output from the input tok embed
4952+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
4953+ ml.n_created--; // artificial tensor
4954+ ml.size_data += ggml_nbytes(model.output);
4955+ }
4956+
4957+ for (int i = 0; i < n_layer; ++i) {
4958+ ggml_context * ctx_layer = ctx_for_layer(i);
4959+ ggml_context * ctx_split = ctx_for_layer_split(i);
4960+
4961+ auto & layer = model.layers[i];
4962+
4963+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
4964+
4965+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
4966+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
4967+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
4968+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
4969+
4970+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
4971+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
4972+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
4973+ }
4974+ } break;
49134975 default:
49144976 throw std::runtime_error("unknown architecture");
49154977 }
@@ -8302,6 +8364,125 @@ struct llm_build_context {
83028364
83038365 return gf;
83048366 }
8367+
8368+ struct ggml_cgraph * build_command_r() {
8369+
8370+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
8371+
8372+ const int64_t n_embd_head = hparams.n_embd_head_v;
8373+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8374+ const float f_logit_scale = hparams.f_logit_scale;
8375+
8376+ struct ggml_tensor * cur;
8377+ struct ggml_tensor * inpL;
8378+
8379+ inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
8380+ cb(inpL, "inp_embd", -1);
8381+
8382+ // inp_pos - contains the positions
8383+ struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
8384+ cb(inp_pos, "inp_pos", -1);
8385+
8386+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
8387+ struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
8388+ cb(KQ_mask, "KQ_mask", -1);
8389+
8390+ for (int il = 0; il < n_layer; ++il) {
8391+
8392+ // norm
8393+ cur = llm_build_norm(ctx0, inpL, hparams,
8394+ model.layers[il].attn_norm, NULL,
8395+ LLM_NORM, cb, il);
8396+ cb(cur, "attn_norm", il);
8397+ struct ggml_tensor * ffn_inp = cur;
8398+
8399+ // self-attention
8400+ {
8401+ // compute Q and K and RoPE them
8402+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
8403+ cb(Qcur, "Qcur", il);
8404+ if (model.layers[il].bq) {
8405+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
8406+ cb(Qcur, "Qcur", il);
8407+ }
8408+
8409+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
8410+ cb(Kcur, "Kcur", il);
8411+ if (model.layers[il].bk) {
8412+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
8413+ cb(Kcur, "Kcur", il);
8414+ }
8415+
8416+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
8417+ cb(Vcur, "Vcur", il);
8418+ if (model.layers[il].bv) {
8419+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
8420+ cb(Vcur, "Vcur", il);
8421+ }
8422+
8423+ Qcur = ggml_rope_custom(
8424+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
8425+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
8426+ ext_factor, attn_factor, beta_fast, beta_slow
8427+ );
8428+ cb(Qcur, "Qcur", il);
8429+
8430+ Kcur = ggml_rope_custom(
8431+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
8432+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
8433+ ext_factor, attn_factor, beta_fast, beta_slow
8434+ );
8435+ cb(Kcur, "Kcur", il);
8436+
8437+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
8438+ model.layers[il].wo, model.layers[il].bo,
8439+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
8440+ cb(cur, "kqv_out", il);
8441+ }
8442+
8443+ struct ggml_tensor * attn_out = cur;
8444+
8445+ // feed-forward network
8446+ {
8447+ cur = llm_build_ffn(ctx0, ffn_inp,
8448+ model.layers[il].ffn_up, NULL,
8449+ model.layers[il].ffn_gate, NULL,
8450+ model.layers[il].ffn_down, NULL,
8451+ NULL,
8452+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
8453+ cb(cur, "ffn_out", il);
8454+ }
8455+
8456+ // add together residual + FFN + self-attention
8457+ cur = ggml_add(ctx0, cur, inpL);
8458+ cur = ggml_add(ctx0, cur, attn_out);
8459+ cb(cur, "l_out", il);
8460+
8461+ // input for next layer
8462+ inpL = cur;
8463+ }
8464+
8465+ cur = inpL;
8466+
8467+ cur = llm_build_norm(ctx0, cur, hparams,
8468+ model.output_norm, NULL,
8469+ LLM_NORM, cb, -1);
8470+ cb(cur, "result_norm", -1);
8471+
8472+ // lm_head
8473+ cur = ggml_mul_mat(ctx0, model.output, cur);
8474+
8475+ if (f_logit_scale) {
8476+ cur = ggml_scale(ctx0, cur, f_logit_scale);
8477+ }
8478+
8479+ cb(cur, "result_output", -1);
8480+
8481+ ggml_build_forward_expand(gf, cur);
8482+
8483+ return gf;
8484+
8485+ }
83058486};
83068487
83078488static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -8473,6 +8654,10 @@ static struct ggml_cgraph * llama_build_graph(
84738654 {
84748655 result = llm.build_mamba();
84758656 } break;
8657+ case LLM_ARCH_COMMAND_R:
8658+ {
8659+ result = llm.build_command_r();
8660+ } break;
84768661 default:
84778662 GGML_ASSERT(false);
84788663 }
@@ -13053,6 +13238,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
1305313238 case LLM_ARCH_ORION:
1305413239 case LLM_ARCH_INTERNLM2:
1305513240 case LLM_ARCH_MINICPM:
13241+ case LLM_ARCH_COMMAND_R:
1305613242 return LLAMA_ROPE_TYPE_NORM;
1305713243
1305813244 // the pairs of head values are offset by n_rot/2
0 commit comments