|
1 | | -#ifndef _GNU_SOURCE |
2 | | -#define _GNU_SOURCE |
3 | | -#endif |
4 | | - |
5 | | -#include "common.h" |
6 | | -#include "gguf-llama.h" |
7 | | -#include "build-info.h" |
8 | | - |
9 | | -#include <cmath> |
10 | | -#include <cstdio> |
11 | | -#include <string> |
12 | | -#include <vector> |
13 | | - |
14 | | -int main(int argc, char ** argv) { |
15 | | - gpt_params params; |
16 | | - |
17 | | - if (argc == 1 || argv[1][0] == '-') { |
18 | | - printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]); |
19 | | - return 1 ; |
20 | | - } |
21 | | - |
22 | | - if (argc >= 2) { |
23 | | - params.model = argv[1]; |
24 | | - } |
25 | | - |
26 | | - if (argc >= 3) { |
27 | | - params.prompt = argv[2]; |
28 | | - } |
29 | | - |
30 | | - if (params.prompt.empty()) { |
31 | | - params.prompt = "Hello my name is"; |
32 | | - } |
33 | | - |
34 | | - // init LLM |
35 | | - |
36 | | - llama_backend_init(params.numa); |
37 | | - |
38 | | - llama_context_params ctx_params = llama_context_default_params(); |
39 | | - |
40 | | - llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params); |
41 | | - |
42 | | - if (model == NULL) { |
43 | | - fprintf(stderr , "%s: error: unable to load model\n" , __func__); |
44 | | - return 1; |
45 | | - } |
46 | | - |
47 | | - llama_context * ctx = llama_new_context_with_model(model, ctx_params); |
48 | | - |
49 | | - // tokenize the prompt |
50 | | - |
51 | | - std::vector<llama_token> tokens_list; |
52 | | - tokens_list = ::llama_tokenize(ctx, params.prompt, true); |
53 | | - |
54 | | - const int max_context_size = llama_n_ctx(ctx); |
55 | | - const int max_tokens_list_size = max_context_size - 4; |
56 | | - |
57 | | - if ((int)tokens_list.size() > max_tokens_list_size) { |
58 | | - fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size); |
59 | | - return 1; |
60 | | - } |
61 | | - |
62 | | - fprintf(stderr, "\n\n"); |
63 | | - |
64 | | - for (auto id : tokens_list) { |
65 | | - fprintf(stderr, "%s", llama_token_to_str(ctx, id)); |
66 | | - } |
67 | | - |
68 | | - fflush(stderr); |
69 | | - |
70 | | - // main loop |
71 | | - |
72 | | - // The LLM keeps a contextual cache memory of previous token evaluation. |
73 | | - // Usually, once this cache is full, it is required to recompute a compressed context based on previous |
74 | | - // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist |
75 | | - // example, we will just stop the loop once this cache is full or once an end of stream is detected. |
76 | | - |
77 | | - while (llama_get_kv_cache_token_count(ctx) < max_context_size) { |
78 | | - // evaluate the transformer |
79 | | - |
80 | | - if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) { |
81 | | - fprintf(stderr, "%s : failed to eval\n", __func__); |
82 | | - return 1; |
83 | | - } |
84 | | - |
85 | | - tokens_list.clear(); |
86 | | - |
87 | | - // sample the next token |
88 | | - |
89 | | - llama_token new_token_id = 0; |
90 | | - |
91 | | - auto logits = llama_get_logits(ctx); |
92 | | - auto n_vocab = llama_n_vocab(ctx); |
93 | | - |
94 | | - std::vector<llama_token_data> candidates; |
95 | | - candidates.reserve(n_vocab); |
96 | | - |
97 | | - for (llama_token token_id = 0; token_id < n_vocab; token_id++) { |
98 | | - candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); |
99 | | - } |
100 | | - |
101 | | - llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; |
102 | | - |
103 | | - new_token_id = llama_sample_token_greedy(ctx , &candidates_p); |
104 | | - |
105 | | - // is it an end of stream ? |
106 | | - if (new_token_id == llama_token_eos()) { |
107 | | - fprintf(stderr, " [end of text]\n"); |
108 | | - break; |
109 | | - } |
110 | | - |
111 | | - // print the new token : |
112 | | - printf("%s", llama_token_to_str(ctx, new_token_id)); |
113 | | - fflush(stdout); |
114 | | - |
115 | | - // push this new token for next evaluation |
116 | | - tokens_list.push_back(new_token_id); |
117 | | - |
118 | | - } |
119 | | - |
120 | | - llama_free(ctx); |
121 | | - llama_free_model(model); |
122 | | - |
123 | | - llama_backend_free(); |
124 | | - |
125 | | - return 0; |
126 | | -} |
| 1 | +#ifndef _GNU_SOURCE |
| 2 | +#define _GNU_SOURCE |
| 3 | +#endif |
| 4 | + |
| 5 | +#include "common.h" |
| 6 | +#include "gguf-llama.h" |
| 7 | +#include "build-info.h" |
| 8 | + |
| 9 | +#include <cmath> |
| 10 | +#include <cstdio> |
| 11 | +#include <string> |
| 12 | +#include <vector> |
| 13 | + |
| 14 | +int main(int argc, char ** argv) { |
| 15 | + gpt_params params; |
| 16 | + |
| 17 | + if (argc == 1 || argv[1][0] == '-') { |
| 18 | + printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]); |
| 19 | + return 1 ; |
| 20 | + } |
| 21 | + |
| 22 | + if (argc >= 2) { |
| 23 | + params.model = argv[1]; |
| 24 | + } |
| 25 | + |
| 26 | + if (argc >= 3) { |
| 27 | + params.prompt = argv[2]; |
| 28 | + } |
| 29 | + |
| 30 | + if (params.prompt.empty()) { |
| 31 | + params.prompt = "Hello my name is"; |
| 32 | + } |
| 33 | + |
| 34 | + // init LLM |
| 35 | + |
| 36 | + llama_backend_init(params.numa); |
| 37 | + |
| 38 | + llama_context_params ctx_params = llama_context_default_params(); |
| 39 | + |
| 40 | + llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params); |
| 41 | + |
| 42 | + if (model == NULL) { |
| 43 | + fprintf(stderr , "%s: error: unable to load model\n" , __func__); |
| 44 | + return 1; |
| 45 | + } |
| 46 | + |
| 47 | + llama_context * ctx = llama_new_context_with_model(model, ctx_params); |
| 48 | + |
| 49 | + // tokenize the prompt |
| 50 | + |
| 51 | + std::vector<llama_token> tokens_list; |
| 52 | + tokens_list = ::llama_tokenize(ctx, params.prompt, true); |
| 53 | + |
| 54 | + const int max_context_size = llama_n_ctx(ctx); |
| 55 | + const int max_tokens_list_size = max_context_size - 4; |
| 56 | + |
| 57 | + if ((int) tokens_list.size() > max_tokens_list_size) { |
| 58 | + fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size); |
| 59 | + return 1; |
| 60 | + } |
| 61 | + |
| 62 | + fprintf(stderr, "\n\n"); |
| 63 | + |
| 64 | + for (auto id : tokens_list) { |
| 65 | + fprintf(stderr, "%s", llama_token_to_str(ctx, id).c_str()); |
| 66 | + } |
| 67 | + |
| 68 | + fflush(stderr); |
| 69 | + |
| 70 | + // main loop |
| 71 | + |
| 72 | + // The LLM keeps a contextual cache memory of previous token evaluation. |
| 73 | + // Usually, once this cache is full, it is required to recompute a compressed context based on previous |
| 74 | + // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist |
| 75 | + // example, we will just stop the loop once this cache is full or once an end of stream is detected. |
| 76 | + |
| 77 | + while (llama_get_kv_cache_token_count(ctx) < max_context_size) { |
| 78 | + // evaluate the transformer |
| 79 | + |
| 80 | + if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) { |
| 81 | + fprintf(stderr, "%s : failed to eval\n", __func__); |
| 82 | + return 1; |
| 83 | + } |
| 84 | + |
| 85 | + tokens_list.clear(); |
| 86 | + |
| 87 | + // sample the next token |
| 88 | + |
| 89 | + llama_token new_token_id = 0; |
| 90 | + |
| 91 | + auto logits = llama_get_logits(ctx); |
| 92 | + auto n_vocab = llama_n_vocab(ctx); |
| 93 | + |
| 94 | + std::vector<llama_token_data> candidates; |
| 95 | + candidates.reserve(n_vocab); |
| 96 | + |
| 97 | + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { |
| 98 | + candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); |
| 99 | + } |
| 100 | + |
| 101 | + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; |
| 102 | + |
| 103 | + new_token_id = llama_sample_token_greedy(ctx , &candidates_p); |
| 104 | + |
| 105 | + // is it an end of stream ? |
| 106 | + if (new_token_id == llama_token_eos()) { |
| 107 | + fprintf(stderr, " [end of text]\n"); |
| 108 | + break; |
| 109 | + } |
| 110 | + |
| 111 | + // print the new token : |
| 112 | + printf("%s", llama_token_to_str(ctx, new_token_id).c_str()); |
| 113 | + fflush(stdout); |
| 114 | + |
| 115 | + // push this new token for next evaluation |
| 116 | + tokens_list.push_back(new_token_id); |
| 117 | + |
| 118 | + } |
| 119 | + |
| 120 | + llama_free(ctx); |
| 121 | + llama_free_model(model); |
| 122 | + |
| 123 | + llama_backend_free(); |
| 124 | + |
| 125 | + return 0; |
| 126 | +} |
0 commit comments