| 
 | 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates.  | 
 | 2 | +# All rights reserved.  | 
 | 3 | +#  | 
 | 4 | +# This source code is licensed under the BSD-style license found in the  | 
 | 5 | +# LICENSE file in the root directory of this source tree.  | 
 | 6 | + | 
 | 7 | +# This functionality requires SQLAlchemy 2.0 or later.  | 
 | 8 | + | 
 | 9 | +import math  | 
 | 10 | +import struct  | 
 | 11 | +from typing import Optional, Tuple  | 
 | 12 | + | 
 | 13 | +import numpy as np  | 
 | 14 | + | 
 | 15 | +from pytorch3d.implicitron.dataset.types import (  | 
 | 16 | +    DepthAnnotation,  | 
 | 17 | +    ImageAnnotation,  | 
 | 18 | +    MaskAnnotation,  | 
 | 19 | +    PointCloudAnnotation,  | 
 | 20 | +    VideoAnnotation,  | 
 | 21 | +    ViewpointAnnotation,  | 
 | 22 | +)  | 
 | 23 | + | 
 | 24 | +from sqlalchemy import LargeBinary  | 
 | 25 | +from sqlalchemy.orm import (  | 
 | 26 | +    composite,  | 
 | 27 | +    DeclarativeBase,  | 
 | 28 | +    Mapped,  | 
 | 29 | +    mapped_column,  | 
 | 30 | +    MappedAsDataclass,  | 
 | 31 | +)  | 
 | 32 | +from sqlalchemy.types import TypeDecorator  | 
 | 33 | + | 
 | 34 | + | 
 | 35 | +# these produce policies to serialize structured types to blobs  | 
 | 36 | +def ArrayTypeFactory(shape):  | 
 | 37 | +    class NumpyArrayType(TypeDecorator):  | 
 | 38 | +        impl = LargeBinary  | 
 | 39 | + | 
 | 40 | +        def process_bind_param(self, value, dialect):  | 
 | 41 | +            if value is not None:  | 
 | 42 | +                if value.shape != shape:  | 
 | 43 | +                    raise ValueError(f"Passed an array of wrong shape: {value.shape}")  | 
 | 44 | +                return value.astype(np.float32).tobytes()  | 
 | 45 | +            return None  | 
 | 46 | + | 
 | 47 | +        def process_result_value(self, value, dialect):  | 
 | 48 | +            if value is not None:  | 
 | 49 | +                return np.frombuffer(value, dtype=np.float32).reshape(shape)  | 
 | 50 | +            return None  | 
 | 51 | + | 
 | 52 | +    return NumpyArrayType  | 
 | 53 | + | 
 | 54 | + | 
 | 55 | +def TupleTypeFactory(dtype=float, shape: Tuple[int, ...] = (2,)):  | 
 | 56 | +    format_symbol = {  | 
 | 57 | +        float: "f",  # float32  | 
 | 58 | +        int: "i",  # int32  | 
 | 59 | +    }[dtype]  | 
 | 60 | + | 
 | 61 | +    class TupleType(TypeDecorator):  | 
 | 62 | +        impl = LargeBinary  | 
 | 63 | +        _format = format_symbol * math.prod(shape)  | 
 | 64 | + | 
 | 65 | +        def process_bind_param(self, value, _):  | 
 | 66 | +            if value is None:  | 
 | 67 | +                return None  | 
 | 68 | + | 
 | 69 | +            if len(shape) > 1:  | 
 | 70 | +                value = np.array(value, dtype=dtype).reshape(-1)  | 
 | 71 | + | 
 | 72 | +            return struct.pack(TupleType._format, *value)  | 
 | 73 | + | 
 | 74 | +        def process_result_value(self, value, _):  | 
 | 75 | +            if value is None:  | 
 | 76 | +                return None  | 
 | 77 | + | 
 | 78 | +            loaded = struct.unpack(TupleType._format, value)  | 
 | 79 | +            if len(shape) > 1:  | 
 | 80 | +                loaded = _rec_totuple(  | 
 | 81 | +                    np.array(loaded, dtype=dtype).reshape(shape).tolist()  | 
 | 82 | +                )  | 
 | 83 | + | 
 | 84 | +            return loaded  | 
 | 85 | + | 
 | 86 | +    return TupleType  | 
 | 87 | + | 
 | 88 | + | 
 | 89 | +def _rec_totuple(t):  | 
 | 90 | +    if isinstance(t, list):  | 
 | 91 | +        return tuple(_rec_totuple(x) for x in t)  | 
 | 92 | + | 
 | 93 | +    return t  | 
 | 94 | + | 
 | 95 | + | 
 | 96 | +class Base(MappedAsDataclass, DeclarativeBase):  | 
 | 97 | +    """subclasses will be converted to dataclasses"""  | 
 | 98 | + | 
 | 99 | + | 
 | 100 | +class SqlFrameAnnotation(Base):  | 
 | 101 | +    __tablename__ = "frame_annots"  | 
 | 102 | + | 
 | 103 | +    sequence_name: Mapped[str] = mapped_column(primary_key=True)  | 
 | 104 | +    frame_number: Mapped[int] = mapped_column(primary_key=True)  | 
 | 105 | +    frame_timestamp: Mapped[float] = mapped_column(index=True)  | 
 | 106 | + | 
 | 107 | +    image: Mapped[ImageAnnotation] = composite(  | 
 | 108 | +        mapped_column("_image_path"),  | 
 | 109 | +        mapped_column("_image_size", TupleTypeFactory(int)),  | 
 | 110 | +    )  | 
 | 111 | + | 
 | 112 | +    depth: Mapped[DepthAnnotation] = composite(  | 
 | 113 | +        mapped_column("_depth_path", nullable=True),  | 
 | 114 | +        mapped_column("_depth_scale_adjustment", nullable=True),  | 
 | 115 | +        mapped_column("_depth_mask_path", nullable=True),  | 
 | 116 | +    )  | 
 | 117 | + | 
 | 118 | +    mask: Mapped[MaskAnnotation] = composite(  | 
 | 119 | +        mapped_column("_mask_path", nullable=True),  | 
 | 120 | +        mapped_column("_mask_mass", index=True, nullable=True),  | 
 | 121 | +        mapped_column(  | 
 | 122 | +            "_mask_bounding_box_xywh",  | 
 | 123 | +            TupleTypeFactory(float, shape=(4,)),  | 
 | 124 | +            nullable=True,  | 
 | 125 | +        ),  | 
 | 126 | +    )  | 
 | 127 | + | 
 | 128 | +    viewpoint: Mapped[ViewpointAnnotation] = composite(  | 
 | 129 | +        mapped_column(  | 
 | 130 | +            "_viewpoint_R", TupleTypeFactory(float, shape=(3, 3)), nullable=True  | 
 | 131 | +        ),  | 
 | 132 | +        mapped_column(  | 
 | 133 | +            "_viewpoint_T", TupleTypeFactory(float, shape=(3,)), nullable=True  | 
 | 134 | +        ),  | 
 | 135 | +        mapped_column(  | 
 | 136 | +            "_viewpoint_focal_length", TupleTypeFactory(float), nullable=True  | 
 | 137 | +        ),  | 
 | 138 | +        mapped_column(  | 
 | 139 | +            "_viewpoint_principal_point", TupleTypeFactory(float), nullable=True  | 
 | 140 | +        ),  | 
 | 141 | +        mapped_column("_viewpoint_intrinsics_format", nullable=True),  | 
 | 142 | +    )  | 
 | 143 | + | 
 | 144 | + | 
 | 145 | +class SqlSequenceAnnotation(Base):  | 
 | 146 | +    __tablename__ = "sequence_annots"  | 
 | 147 | + | 
 | 148 | +    sequence_name: Mapped[str] = mapped_column(primary_key=True)  | 
 | 149 | +    category: Mapped[str] = mapped_column(index=True)  | 
 | 150 | + | 
 | 151 | +    video: Mapped[VideoAnnotation] = composite(  | 
 | 152 | +        mapped_column("_video_path", nullable=True),  | 
 | 153 | +        mapped_column("_video_length", nullable=True),  | 
 | 154 | +    )  | 
 | 155 | +    point_cloud: Mapped[PointCloudAnnotation] = composite(  | 
 | 156 | +        mapped_column("_point_cloud_path", nullable=True),  | 
 | 157 | +        mapped_column("_point_cloud_quality_score", nullable=True),  | 
 | 158 | +        mapped_column("_point_cloud_n_points", nullable=True),  | 
 | 159 | +    )  | 
 | 160 | +    # the bigger the better  | 
 | 161 | +    viewpoint_quality_score: Mapped[Optional[float]] = mapped_column(default=None)  | 
0 commit comments