@@ -764,8 +764,8 @@ CUnivariateTimeSeriesModel::addSamples(const CModelAddSamplesParams ¶ms,
764764 {
765765 CDecayRateController &controller{(*m_Controllers)[E_TrendControl]};
766766 core_t ::TTime time{static_cast <core_t ::TTime>(CBasicStatistics::mean (averageTime))};
767- TDouble1Vec prediction {m_Trend->mean (time)};
768- multiplier = controller.multiplier (prediction , errors[E_TrendControl],
767+ TDouble1Vec trendMean {m_Trend->meanValue (time)};
768+ multiplier = controller.multiplier (trendMean , errors[E_TrendControl],
769769 this ->params ().bucketLength (),
770770 this ->params ().learnRate (),
771771 this ->params ().decayRate ());
@@ -777,8 +777,8 @@ CUnivariateTimeSeriesModel::addSamples(const CModelAddSamplesParams ¶ms,
777777 }
778778 {
779779 CDecayRateController &controller{(*m_Controllers)[E_PriorControl]};
780- TDouble1Vec prediction {m_Prior->marginalLikelihoodMean ()};
781- multiplier = controller.multiplier (prediction , errors[E_PriorControl],
780+ TDouble1Vec residualMean {m_Prior->marginalLikelihoodMean ()};
781+ multiplier = controller.multiplier (residualMean , errors[E_PriorControl],
782782 this ->params ().bucketLength (),
783783 this ->params ().learnRate (),
784784 this ->params ().decayRate ());
@@ -820,7 +820,7 @@ CUnivariateTimeSeriesModel::mode(core_t::TTime time,
820820 weights.push_back (weight[0 ]);
821821 }
822822 return { m_Prior->marginalLikelihoodMode (weightStyles, weights)
823- + CBasicStatistics::mean (m_Trend->baseline (time))};
823+ + CBasicStatistics::mean (m_Trend->value (time))};
824824}
825825
826826CUnivariateTimeSeriesModel::TDouble2Vec1Vec
@@ -840,11 +840,11 @@ CUnivariateTimeSeriesModel::correlateModes(core_t::TTime time,
840840 {
841841 result.resize (correlated.size (), TDouble10Vec (2 ));
842842
843- double baseline [2 ];
844- baseline [0 ] = CBasicStatistics::mean (m_Trend->baseline (time));
843+ double trend [2 ];
844+ trend [0 ] = CBasicStatistics::mean (m_Trend->value (time));
845845 for (std::size_t i = 0u ; i < correlated.size (); ++i)
846846 {
847- baseline [1 ] = CBasicStatistics::mean (correlatedTimeSeriesModels[i]->m_Trend ->baseline (time));
847+ trend [1 ] = CBasicStatistics::mean (correlatedTimeSeriesModels[i]->m_Trend ->value (time));
848848 TDouble10Vec4Vec weights;
849849 weights.resize (weights_[i].size (), TDouble10Vec (2 ));
850850 for (std::size_t j = 0u ; j < weights_[i].size (); ++j)
@@ -855,8 +855,8 @@ CUnivariateTimeSeriesModel::correlateModes(core_t::TTime time,
855855 }
856856 }
857857 TDouble10Vec mode (correlationDistributionModels[i].first ->marginalLikelihoodMode (weightStyles, weights));
858- result[i][variables[i][0 ]] = baseline [0 ] + mode[variables[i][0 ]];
859- result[i][variables[i][1 ]] = baseline [1 ] + mode[variables[i][1 ]];
858+ result[i][variables[i][0 ]] = trend [0 ] + mode[variables[i][0 ]];
859+ result[i][variables[i][1 ]] = trend [1 ] + mode[variables[i][1 ]];
860860 }
861861 }
862862
@@ -953,10 +953,10 @@ CUnivariateTimeSeriesModel::predict(core_t::TTime time,
953953
954954 double scale{1.0 - this ->params ().probabilityBucketEmpty ()};
955955
956- double seasonalOffset {0.0 };
956+ double trend {0.0 };
957957 if (m_Trend->initialized ())
958958 {
959- seasonalOffset = CBasicStatistics::mean (m_Trend->baseline (time));
959+ trend = CBasicStatistics::mean (m_Trend->value (time));
960960 }
961961
962962 if (hint.size () == 1 )
@@ -968,7 +968,7 @@ CUnivariateTimeSeriesModel::predict(core_t::TTime time,
968968 m_Prior->marginalLikelihoodMean () :
969969 (hint.empty () ? CBasicStatistics::mean (m_Prior->marginalLikelihoodConfidenceInterval (0.0 )) :
970970 m_Prior->nearestMarginalLikelihoodMean (hint[0 ]))};
971- double result{scale * (seasonalOffset + median + correlateCorrection)};
971+ double result{scale * (trend + median + correlateCorrection)};
972972
973973 return {m_IsNonNegative ? std::max (result, 0.0 ) : result};
974974}
@@ -986,8 +986,8 @@ CUnivariateTimeSeriesModel::confidenceInterval(core_t::TTime time,
986986
987987 double scale{1.0 - this ->params ().probabilityBucketEmpty ()};
988988
989- double seasonalOffset {m_Trend->initialized () ?
990- CBasicStatistics::mean (m_Trend->baseline (time, confidenceInterval)) : 0.0 };
989+ double trend {m_Trend->initialized () ?
990+ CBasicStatistics::mean (m_Trend->value (time, confidenceInterval)) : 0.0 };
991991
992992 TDouble4Vec weights;
993993 weights.reserve (weights_.size ());
@@ -1001,9 +1001,9 @@ CUnivariateTimeSeriesModel::confidenceInterval(core_t::TTime time,
10011001 TDoubleDoublePr interval{
10021002 m_Prior->marginalLikelihoodConfidenceInterval (confidenceInterval, weightStyles, weights)};
10031003
1004- double result[]{scale * (seasonalOffset + interval.first ),
1005- scale * (seasonalOffset + median),
1006- scale * (seasonalOffset + interval.second )};
1004+ double result[]{scale * (trend + interval.first ),
1005+ scale * (trend + median),
1006+ scale * (trend + interval.second )};
10071007
10081008 return {{m_IsNonNegative ? std::max (result[0 ], 0.0 ) : result[0 ]},
10091009 {m_IsNonNegative ? std::max (result[1 ], 0.0 ) : result[1 ]},
@@ -2208,13 +2208,13 @@ CMultivariateTimeSeriesModel::addSamples(const CModelAddSamplesParams ¶ms,
22082208 }
22092209 {
22102210 CDecayRateController &controller{(*m_Controllers)[E_TrendControl]};
2211- TDouble1Vec prediction (dimension);
2211+ TDouble1Vec trendMean (dimension);
22122212 core_t ::TTime time{static_cast <core_t ::TTime>(CBasicStatistics::mean (averageTime))};
22132213 for (std::size_t d = 0u ; d < dimension; ++d)
22142214 {
2215- prediction [d] = m_Trend[d]->mean (time);
2215+ trendMean [d] = m_Trend[d]->meanValue (time);
22162216 }
2217- double multiplier{controller.multiplier (prediction , errors[E_TrendControl],
2217+ double multiplier{controller.multiplier (trendMean , errors[E_TrendControl],
22182218 this ->params ().bucketLength (),
22192219 this ->params ().learnRate (),
22202220 this ->params ().decayRate ())};
@@ -2229,8 +2229,8 @@ CMultivariateTimeSeriesModel::addSamples(const CModelAddSamplesParams ¶ms,
22292229 }
22302230 {
22312231 CDecayRateController &controller{(*m_Controllers)[E_PriorControl]};
2232- TDouble1Vec prediction (m_Prior->marginalLikelihoodMean ());
2233- double multiplier{controller.multiplier (prediction , errors[E_PriorControl],
2232+ TDouble1Vec residualMean (m_Prior->marginalLikelihoodMean ());
2233+ double multiplier{controller.multiplier (residualMean , errors[E_PriorControl],
22342234 this ->params ().bucketLength (),
22352235 this ->params ().learnRate (),
22362236 this ->params ().decayRate ())};
@@ -2280,7 +2280,7 @@ CMultivariateTimeSeriesModel::mode(core_t::TTime time,
22802280
22812281 for (std::size_t d = 0u ; d < dimension; ++d)
22822282 {
2283- result[d] = mode[d] + CBasicStatistics::mean (m_Trend[d]->baseline (time));
2283+ result[d] = mode[d] + CBasicStatistics::mean (m_Trend[d]->value (time));
22842284 }
22852285
22862286 return result;
@@ -2353,10 +2353,10 @@ CMultivariateTimeSeriesModel::predict(core_t::TTime time,
23532353 TDouble10Vec mean (m_Prior->marginalLikelihoodMean ());
23542354 for (std::size_t d = 0u ; d < dimension; --marginalize[std::min (d, dimension - 2 )], ++d)
23552355 {
2356- double seasonalOffset {0.0 };
2356+ double trend {0.0 };
23572357 if (m_Trend[d]->initialized ())
23582358 {
2359- seasonalOffset = CBasicStatistics::mean (m_Trend[d]->baseline (time));
2359+ trend = CBasicStatistics::mean (m_Trend[d]->value (time));
23602360 }
23612361 double median{mean[d]};
23622362 if (!m_Prior->isNonInformative ())
@@ -2365,7 +2365,7 @@ CMultivariateTimeSeriesModel::predict(core_t::TTime time,
23652365 median = hint.empty () ? CBasicStatistics::mean (marginal->marginalLikelihoodConfidenceInterval (0.0 )) :
23662366 marginal->nearestMarginalLikelihoodMean (hint[d]);
23672367 }
2368- result[d] = scale * (seasonalOffset + median);
2368+ result[d] = scale * (trend + median);
23692369 if (m_IsNonNegative)
23702370 {
23712371 result[d] = std::max (result[d], 0.0 );
@@ -2401,9 +2401,8 @@ CMultivariateTimeSeriesModel::confidenceInterval(core_t::TTime time,
24012401 TDouble4Vec weights;
24022402 for (std::size_t d = 0u ; d < dimension; --marginalize[std::min (d, dimension - 2 )], ++d)
24032403 {
2404- double seasonalOffset{m_Trend[d]->initialized () ?
2405- CBasicStatistics::mean (
2406- m_Trend[d]->baseline (time, confidenceInterval)) : 0.0 };
2404+ double trend{m_Trend[d]->initialized () ?
2405+ CBasicStatistics::mean (m_Trend[d]->value (time, confidenceInterval)) : 0.0 };
24072406
24082407 weights.clear ();
24092408 weights.reserve (weights_.size ());
@@ -2417,9 +2416,9 @@ CMultivariateTimeSeriesModel::confidenceInterval(core_t::TTime time,
24172416 TDoubleDoublePr interval{
24182417 marginal->marginalLikelihoodConfidenceInterval (confidenceInterval, weightStyles, weights)};
24192418
2420- result[0 ][d] = scale * (seasonalOffset + interval.first );
2421- result[1 ][d] = scale * (seasonalOffset + median);
2422- result[2 ][d] = scale * (seasonalOffset + interval.second );
2419+ result[0 ][d] = scale * (trend + interval.first );
2420+ result[1 ][d] = scale * (trend + median);
2421+ result[2 ][d] = scale * (trend + interval.second );
24232422 if (m_IsNonNegative)
24242423 {
24252424 result[0 ][d] = std::max (result[0 ][d], 0.0 );
0 commit comments