diff --git a/src/Microsoft.ML.AutoML/API/AutoCatalog.cs b/src/Microsoft.ML.AutoML/API/AutoCatalog.cs index 280777db70..a965fcf832 100644 --- a/src/Microsoft.ML.AutoML/API/AutoCatalog.cs +++ b/src/Microsoft.ML.AutoML/API/AutoCatalog.cs @@ -10,6 +10,7 @@ using Microsoft.ML.Data; using Microsoft.ML.Runtime; using Microsoft.ML.SearchSpace; +using Microsoft.ML.Trainers; using Microsoft.ML.Trainers.FastTree; namespace Microsoft.ML.AutoML @@ -313,22 +314,37 @@ public AutoMLExperiment CreateExperiment(AutoMLExperiment.AutoMLExperimentSettin /// true if use fast forest as available trainer. /// true if use lgbm as available trainer. /// true if use fast tree as available trainer. - /// true if use lbfgs as available trainer. - /// true if use sdca as available trainer. + /// true if use as available trainer. + /// true if use as available trainer. /// if provided, use it as initial option for fast tree, otherwise the default option will be used. /// if provided, use it as initial option for lgbm, otherwise the default option will be used. /// if provided, use it as initial option for fast forest, otherwise the default option will be used. - /// if provided, use it as initial option for lbfgs, otherwise the default option will be used. - /// if provided, use it as initial option for sdca, otherwise the default option will be used. + /// if provided, use it as initial option for , otherwise the default option will be used. + /// if provided, use it as initial option for , otherwise the default option will be used. /// if provided, use it as search space for fast tree, otherwise the default search space will be used. /// if provided, use it as search space for lgbm, otherwise the default search space will be used. /// if provided, use it as search space for fast forest, otherwise the default search space will be used. - /// if provided, use it as search space for lbfgs, otherwise the default search space will be used. - /// if provided, use it as search space for sdca, otherwise the default search space will be used. + /// if provided, use it as search space for , otherwise the default search space will be used. + /// if provided, use it as search space for , otherwise the default search space will be used. /// - public SweepablePipeline BinaryClassification(string labelColumnName = DefaultColumnNames.Label, string featureColumnName = DefaultColumnNames.Features, string exampleWeightColumnName = null, bool useFastForest = true, bool useLgbm = true, bool useFastTree = true, bool useLbfgs = true, bool useSdca = true, - FastTreeOption fastTreeOption = null, LgbmOption lgbmOption = null, FastForestOption fastForestOption = null, LbfgsOption lbfgsOption = null, SdcaOption sdcaOption = null, - SearchSpace fastTreeSearchSpace = null, SearchSpace lgbmSearchSpace = null, SearchSpace fastForestSearchSpace = null, SearchSpace lbfgsSearchSpace = null, SearchSpace sdcaSearchSpace = null) + public SweepablePipeline BinaryClassification(string labelColumnName = DefaultColumnNames.Label, + string featureColumnName = DefaultColumnNames.Features, + string exampleWeightColumnName = null, + bool useFastForest = true, + bool useLgbm = true, + bool useFastTree = true, + bool useLbfgsLogisticRegression = true, + bool useSdcaLogisticRegression = true, + FastTreeOption fastTreeOption = null, + LgbmOption lgbmOption = null, + FastForestOption fastForestOption = null, + LbfgsOption lbfgsLogisticRegressionOption = null, + SdcaOption sdcaLogisticRegressionOption = null, + SearchSpace fastTreeSearchSpace = null, + SearchSpace lgbmSearchSpace = null, + SearchSpace fastForestSearchSpace = null, + SearchSpace lbfgsLogisticRegressionSearchSpace = null, + SearchSpace sdcaLogisticRegressionSearchSpace = null) { var res = new List(); @@ -359,22 +375,22 @@ public SweepablePipeline BinaryClassification(string labelColumnName = DefaultCo res.Add(SweepableEstimatorFactory.CreateLightGbmBinary(lgbmOption, lgbmSearchSpace ?? new SearchSpace(lgbmOption))); } - if (useLbfgs) + if (useLbfgsLogisticRegression) { - lbfgsOption = lbfgsOption ?? new LbfgsOption(); - lbfgsOption.LabelColumnName = labelColumnName; - lbfgsOption.FeatureColumnName = featureColumnName; - lbfgsOption.ExampleWeightColumnName = exampleWeightColumnName; - res.Add(SweepableEstimatorFactory.CreateLbfgsLogisticRegressionBinary(lbfgsOption, lbfgsSearchSpace ?? new SearchSpace(lbfgsOption))); + lbfgsLogisticRegressionOption = lbfgsLogisticRegressionOption ?? new LbfgsOption(); + lbfgsLogisticRegressionOption.LabelColumnName = labelColumnName; + lbfgsLogisticRegressionOption.FeatureColumnName = featureColumnName; + lbfgsLogisticRegressionOption.ExampleWeightColumnName = exampleWeightColumnName; + res.Add(SweepableEstimatorFactory.CreateLbfgsLogisticRegressionBinary(lbfgsLogisticRegressionOption, lbfgsLogisticRegressionSearchSpace ?? new SearchSpace(lbfgsLogisticRegressionOption))); } - if (useSdca) + if (useSdcaLogisticRegression) { - sdcaOption = sdcaOption ?? new SdcaOption(); - sdcaOption.LabelColumnName = labelColumnName; - sdcaOption.FeatureColumnName = featureColumnName; - sdcaOption.ExampleWeightColumnName = exampleWeightColumnName; - res.Add(SweepableEstimatorFactory.CreateSdcaLogisticRegressionBinary(sdcaOption, sdcaSearchSpace ?? new SearchSpace(sdcaOption))); + sdcaLogisticRegressionOption = sdcaLogisticRegressionOption ?? new SdcaOption(); + sdcaLogisticRegressionOption.LabelColumnName = labelColumnName; + sdcaLogisticRegressionOption.FeatureColumnName = featureColumnName; + sdcaLogisticRegressionOption.ExampleWeightColumnName = exampleWeightColumnName; + res.Add(SweepableEstimatorFactory.CreateSdcaLogisticRegressionBinary(sdcaLogisticRegressionOption, sdcaLogisticRegressionSearchSpace ?? new SearchSpace(sdcaLogisticRegressionOption))); } return new SweepablePipeline().Append(res.ToArray()); @@ -389,22 +405,50 @@ public SweepablePipeline BinaryClassification(string labelColumnName = DefaultCo /// true if use fast forest as available trainer. /// true if use lgbm as available trainer. /// true if use fast tree as available trainer. - /// true if use lbfgs as available trainer. - /// true if use sdca as available trainer. + /// true if use as available trainer. + /// true if use as available trainer. + /// true if use as available trainer. + /// true if use as available trainer. /// if provided, use it as initial option for fast tree, otherwise the default option will be used. /// if provided, use it as initial option for lgbm, otherwise the default option will be used. /// if provided, use it as initial option for fast forest, otherwise the default option will be used. - /// if provided, use it as initial option for lbfgs, otherwise the default option will be used. - /// if provided, use it as initial option for sdca, otherwise the default option will be used. + /// if provided, use it as initial option for , otherwise the default option will be used. + /// if provided, use it as initial option for , otherwise the default option will be used. + /// if provided, use it as initial option for , otherwise the default option will be used. + /// if provided, use it as initial option for , otherwise the default option will be used. /// if provided, use it as search space for fast tree, otherwise the default search space will be used. /// if provided, use it as search space for lgbm, otherwise the default search space will be used. /// if provided, use it as search space for fast forest, otherwise the default search space will be used. - /// if provided, use it as search space for lbfgs, otherwise the default search space will be used. - /// if provided, use it as search space for sdca, otherwise the default search space will be used. + /// if provided, use it as search space for , otherwise the default search space will be used. + /// if provided, use it as search space for , otherwise the default search space will be used. + /// if provided, use it as search space for , otherwise the default search space will be used. + /// if provided, use it as search space for , otherwise the default search space will be used. /// - public SweepablePipeline MultiClassification(string labelColumnName = DefaultColumnNames.Label, string featureColumnName = DefaultColumnNames.Features, string exampleWeightColumnName = null, bool useFastForest = true, bool useLgbm = true, bool useFastTree = true, bool useLbfgs = true, bool useSdca = true, - FastTreeOption fastTreeOption = null, LgbmOption lgbmOption = null, FastForestOption fastForestOption = null, LbfgsOption lbfgsOption = null, SdcaOption sdcaOption = null, - SearchSpace fastTreeSearchSpace = null, SearchSpace lgbmSearchSpace = null, SearchSpace fastForestSearchSpace = null, SearchSpace lbfgsSearchSpace = null, SearchSpace sdcaSearchSpace = null) + public SweepablePipeline MultiClassification( + string labelColumnName = DefaultColumnNames.Label, + string featureColumnName = DefaultColumnNames.Features, + string exampleWeightColumnName = null, + bool useFastForest = true, + bool useLgbm = true, + bool useFastTree = true, + bool useLbfgsMaximumEntrophy = true, + bool useLbfgsLogisticRegression = true, + bool useSdcaMaximumEntrophy = true, + bool useSdcaLogisticRegression = true, + FastTreeOption fastTreeOption = null, + LgbmOption lgbmOption = null, + FastForestOption fastForestOption = null, + LbfgsOption lbfgsMaximumEntrophyOption = null, + LbfgsOption lbfgsLogisticRegressionOption = null, + SdcaOption sdcaMaximumEntrophyOption = null, + SdcaOption sdcaLogisticRegressionOption = null, + SearchSpace fastTreeSearchSpace = null, + SearchSpace lgbmSearchSpace = null, + SearchSpace fastForestSearchSpace = null, + SearchSpace lbfgsMaximumEntrophySearchSpace = null, + SearchSpace lbfgsLogisticRegressionSearchSpace = null, + SearchSpace sdcaMaximumEntorphySearchSpace = null, + SearchSpace sdcaLogisticRegressionSearchSpace = null) { var res = new List(); @@ -435,24 +479,41 @@ public SweepablePipeline MultiClassification(string labelColumnName = DefaultCol res.Add(SweepableEstimatorFactory.CreateLightGbmMulti(lgbmOption, lgbmSearchSpace ?? new SearchSpace(lgbmOption))); } - if (useLbfgs) + if (useLbfgsLogisticRegression) { - lbfgsOption = lbfgsOption ?? new LbfgsOption(); - lbfgsOption.LabelColumnName = labelColumnName; - lbfgsOption.FeatureColumnName = featureColumnName; - lbfgsOption.ExampleWeightColumnName = exampleWeightColumnName; - res.Add(SweepableEstimatorFactory.CreateLbfgsLogisticRegressionOva(lbfgsOption, lbfgsSearchSpace ?? new SearchSpace(lbfgsOption))); - res.Add(SweepableEstimatorFactory.CreateLbfgsMaximumEntropyMulti(lbfgsOption, lbfgsSearchSpace ?? new SearchSpace(lbfgsOption))); + lbfgsLogisticRegressionOption = lbfgsLogisticRegressionOption ?? new LbfgsOption(); + lbfgsLogisticRegressionOption.LabelColumnName = labelColumnName; + lbfgsLogisticRegressionOption.FeatureColumnName = featureColumnName; + lbfgsLogisticRegressionOption.ExampleWeightColumnName = exampleWeightColumnName; + res.Add(SweepableEstimatorFactory.CreateLbfgsLogisticRegressionOva(lbfgsLogisticRegressionOption, lbfgsLogisticRegressionSearchSpace ?? new SearchSpace(lbfgsLogisticRegressionOption))); } - if (useSdca) + + if (useLbfgsMaximumEntrophy) { - sdcaOption = sdcaOption ?? new SdcaOption(); - sdcaOption.LabelColumnName = labelColumnName; - sdcaOption.FeatureColumnName = featureColumnName; - sdcaOption.ExampleWeightColumnName = exampleWeightColumnName; - res.Add(SweepableEstimatorFactory.CreateSdcaMaximumEntropyMulti(sdcaOption, sdcaSearchSpace ?? new SearchSpace(sdcaOption))); - res.Add(SweepableEstimatorFactory.CreateSdcaLogisticRegressionOva(sdcaOption, sdcaSearchSpace ?? new SearchSpace(sdcaOption))); + lbfgsMaximumEntrophyOption = lbfgsMaximumEntrophyOption ?? new LbfgsOption(); + lbfgsMaximumEntrophyOption.LabelColumnName = labelColumnName; + lbfgsMaximumEntrophyOption.FeatureColumnName = featureColumnName; + lbfgsMaximumEntrophyOption.ExampleWeightColumnName = exampleWeightColumnName; + res.Add(SweepableEstimatorFactory.CreateLbfgsMaximumEntropyMulti(lbfgsMaximumEntrophyOption, lbfgsMaximumEntrophySearchSpace ?? new SearchSpace(lbfgsMaximumEntrophyOption))); + } + + if (useSdcaMaximumEntrophy) + { + sdcaMaximumEntrophyOption = sdcaMaximumEntrophyOption ?? new SdcaOption(); + sdcaMaximumEntrophyOption.LabelColumnName = labelColumnName; + sdcaMaximumEntrophyOption.FeatureColumnName = featureColumnName; + sdcaMaximumEntrophyOption.ExampleWeightColumnName = exampleWeightColumnName; + res.Add(SweepableEstimatorFactory.CreateSdcaMaximumEntropyMulti(sdcaMaximumEntrophyOption, sdcaMaximumEntorphySearchSpace ?? new SearchSpace(sdcaMaximumEntrophyOption))); + } + + if (useSdcaLogisticRegression) + { + sdcaLogisticRegressionOption = sdcaLogisticRegressionOption ?? new SdcaOption(); + sdcaLogisticRegressionOption.LabelColumnName = labelColumnName; + sdcaLogisticRegressionOption.FeatureColumnName = featureColumnName; + sdcaLogisticRegressionOption.ExampleWeightColumnName = exampleWeightColumnName; + res.Add(SweepableEstimatorFactory.CreateSdcaLogisticRegressionOva(sdcaLogisticRegressionOption, sdcaLogisticRegressionSearchSpace ?? new SearchSpace(sdcaLogisticRegressionOption))); } return new SweepablePipeline().Append(res.ToArray()); @@ -467,22 +528,38 @@ public SweepablePipeline MultiClassification(string labelColumnName = DefaultCol /// true if use fast forest as available trainer. /// true if use lgbm as available trainer. /// true if use fast tree as available trainer. - /// true if use lbfgs as available trainer. - /// true if use sdca as available trainer. + /// true if use as available trainer. + /// true if use as available trainer. /// if provided, use it as initial option for fast tree, otherwise the default option will be used. /// if provided, use it as initial option for lgbm, otherwise the default option will be used. /// if provided, use it as initial option for fast forest, otherwise the default option will be used. - /// if provided, use it as initial option for lbfgs, otherwise the default option will be used. - /// if provided, use it as initial option for sdca, otherwise the default option will be used. + /// if provided, use it as initial option for , otherwise the default option will be used. + /// if provided, use it as initial option for , otherwise the default option will be used. /// if provided, use it as search space for fast tree, otherwise the default search space will be used. /// if provided, use it as search space for lgbm, otherwise the default search space will be used. /// if provided, use it as search space for fast forest, otherwise the default search space will be used. - /// if provided, use it as search space for lbfgs, otherwise the default search space will be used. + /// if provided, use it as search space for , otherwise the default search space will be used. /// if provided, use it as search space for sdca, otherwise the default search space will be used. /// - public SweepablePipeline Regression(string labelColumnName = DefaultColumnNames.Label, string featureColumnName = DefaultColumnNames.Features, string exampleWeightColumnName = null, bool useFastForest = true, bool useLgbm = true, bool useFastTree = true, bool useLbfgs = true, bool useSdca = true, - FastTreeOption fastTreeOption = null, LgbmOption lgbmOption = null, FastForestOption fastForestOption = null, LbfgsOption lbfgsOption = null, SdcaOption sdcaOption = null, - SearchSpace fastTreeSearchSpace = null, SearchSpace lgbmSearchSpace = null, SearchSpace fastForestSearchSpace = null, SearchSpace lbfgsSearchSpace = null, SearchSpace sdcaSearchSpace = null) + public SweepablePipeline Regression( + string labelColumnName = DefaultColumnNames.Label, + string featureColumnName = DefaultColumnNames.Features, + string exampleWeightColumnName = null, + bool useFastForest = true, + bool useLgbm = true, + bool useFastTree = true, + bool useLbfgsPoissonRegression = true, + bool useSdca = true, + FastTreeOption fastTreeOption = null, + LgbmOption lgbmOption = null, + FastForestOption fastForestOption = null, + LbfgsOption lbfgsPoissonRegressionOption = null, + SdcaOption sdcaOption = null, + SearchSpace fastTreeSearchSpace = null, + SearchSpace lgbmSearchSpace = null, + SearchSpace fastForestSearchSpace = null, + SearchSpace lbfgsPoissonRegressionSearchSpace = null, + SearchSpace sdcaSearchSpace = null) { var res = new List(); @@ -513,13 +590,13 @@ public SweepablePipeline Regression(string labelColumnName = DefaultColumnNames. res.Add(SweepableEstimatorFactory.CreateLightGbmRegression(lgbmOption, lgbmSearchSpace ?? new SearchSpace(lgbmOption))); } - if (useLbfgs) + if (useLbfgsPoissonRegression) { - lbfgsOption = lbfgsOption ?? new LbfgsOption(); - lbfgsOption.LabelColumnName = labelColumnName; - lbfgsOption.FeatureColumnName = featureColumnName; - lbfgsOption.ExampleWeightColumnName = exampleWeightColumnName; - res.Add(SweepableEstimatorFactory.CreateLbfgsPoissonRegressionRegression(lbfgsOption, lbfgsSearchSpace ?? new SearchSpace(lbfgsOption))); + lbfgsPoissonRegressionOption = lbfgsPoissonRegressionOption ?? new LbfgsOption(); + lbfgsPoissonRegressionOption.LabelColumnName = labelColumnName; + lbfgsPoissonRegressionOption.FeatureColumnName = featureColumnName; + lbfgsPoissonRegressionOption.ExampleWeightColumnName = exampleWeightColumnName; + res.Add(SweepableEstimatorFactory.CreateLbfgsPoissonRegressionRegression(lbfgsPoissonRegressionOption, lbfgsPoissonRegressionSearchSpace ?? new SearchSpace(lbfgsPoissonRegressionOption))); } if (useSdca) diff --git a/src/Microsoft.ML.AutoML/API/BinaryClassificationExperiment.cs b/src/Microsoft.ML.AutoML/API/BinaryClassificationExperiment.cs index f658a6f1aa..761aac2f4c 100644 --- a/src/Microsoft.ML.AutoML/API/BinaryClassificationExperiment.cs +++ b/src/Microsoft.ML.AutoML/API/BinaryClassificationExperiment.cs @@ -327,12 +327,12 @@ private SweepablePipeline CreateBinaryClassificationPipeline(IDataView trainData if (preFeaturizer != null) { return preFeaturizer.Append(Context.Auto().Featurizer(trainData, columnInformation, Features)) - .Append(Context.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgs: uselbfgs, useFastForest: useFastForest, featureColumnName: Features)); + .Append(Context.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdcaLogisticRegression: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsLogisticRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features)); } else { return Context.Auto().Featurizer(trainData, columnInformation, Features) - .Append(Context.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgs: uselbfgs, useFastForest: useFastForest, featureColumnName: Features)); + .Append(Context.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdcaLogisticRegression: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsLogisticRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features)); } } } diff --git a/src/Microsoft.ML.AutoML/API/MulticlassClassificationExperiment.cs b/src/Microsoft.ML.AutoML/API/MulticlassClassificationExperiment.cs index 836eddedb5..b7344e7b0f 100644 --- a/src/Microsoft.ML.AutoML/API/MulticlassClassificationExperiment.cs +++ b/src/Microsoft.ML.AutoML/API/MulticlassClassificationExperiment.cs @@ -313,8 +313,9 @@ private protected override RunDetail GetBestRun private SweepablePipeline CreateMulticlassClassificationPipeline(IDataView trainData, ColumnInformation columnInformation, IEstimator preFeaturizer = null) { - var useSdca = Settings.Trainers.Contains(MulticlassClassificationTrainer.SdcaMaximumEntropy); - var uselbfgs = Settings.Trainers.Contains(MulticlassClassificationTrainer.LbfgsLogisticRegressionOva); + var useSdcaMaximumEntrophy = Settings.Trainers.Contains(MulticlassClassificationTrainer.SdcaMaximumEntropy); + var uselbfgsLR = Settings.Trainers.Contains(MulticlassClassificationTrainer.LbfgsLogisticRegressionOva); + var uselbfgsME = Settings.Trainers.Contains(MulticlassClassificationTrainer.LbfgsMaximumEntropy); var useLgbm = Settings.Trainers.Contains(MulticlassClassificationTrainer.LightGbm); var useFastForest = Settings.Trainers.Contains(MulticlassClassificationTrainer.FastForestOva); var useFastTree = Settings.Trainers.Contains(MulticlassClassificationTrainer.FastTreeOva); @@ -329,7 +330,7 @@ private SweepablePipeline CreateMulticlassClassificationPipeline(IDataView train pipeline = pipeline.Append(Context.Auto().Featurizer(trainData, columnInformation, Features)); pipeline = pipeline.Append(Context.Transforms.Conversion.MapValueToKey(label, label)); - pipeline = pipeline.Append(Context.Auto().MultiClassification(label, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgs: uselbfgs, useFastForest: useFastForest, featureColumnName: Features)); + pipeline = pipeline.Append(Context.Auto().MultiClassification(label, useSdcaMaximumEntrophy: useSdcaMaximumEntrophy, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsMaximumEntrophy: uselbfgsME, useLbfgsLogisticRegression: uselbfgsLR, useFastForest: useFastForest, featureColumnName: Features)); pipeline = pipeline.Append(Context.Transforms.Conversion.MapKeyToValue(DefaultColumnNames.PredictedLabel, DefaultColumnNames.PredictedLabel)); return pipeline; diff --git a/src/Microsoft.ML.AutoML/API/RegressionExperiment.cs b/src/Microsoft.ML.AutoML/API/RegressionExperiment.cs index a836b6c0c0..3d93a63b0a 100644 --- a/src/Microsoft.ML.AutoML/API/RegressionExperiment.cs +++ b/src/Microsoft.ML.AutoML/API/RegressionExperiment.cs @@ -310,7 +310,7 @@ private SweepablePipeline CreateRegressionPipeline(IDataView trainData, ColumnIn var label = columnInformation.LabelColumnName; pipeline = pipeline.Append(Context.Auto().Featurizer(trainData, columnInformation, Features)); - pipeline = pipeline.Append(Context.Auto().Regression(label, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgs: uselbfgs, useFastForest: useFastForest, featureColumnName: Features)); + pipeline = pipeline.Append(Context.Auto().Regression(label, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsPoissonRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features)); return pipeline; } diff --git a/test/Microsoft.ML.AutoML.Tests/AutoMLExperimentTests.cs b/test/Microsoft.ML.AutoML.Tests/AutoMLExperimentTests.cs index 6d14b266bb..18a0245718 100644 --- a/test/Microsoft.ML.AutoML.Tests/AutoMLExperimentTests.cs +++ b/test/Microsoft.ML.AutoML.Tests/AutoMLExperimentTests.cs @@ -212,7 +212,7 @@ public async Task AutoMLExperiment_UCI_Adult_Train_Test_Split_Test() var data = DatasetUtil.GetUciAdultDataView(); var experiment = context.Auto().CreateExperiment(); var pipeline = context.Auto().Featurizer(data, "_Features_", excludeColumns: new[] { DatasetUtil.UciAdultLabel }) - .Append(context.Auto().BinaryClassification(DatasetUtil.UciAdultLabel, "_Features_", useLgbm: false, useSdca: false, useLbfgs: false)); + .Append(context.Auto().BinaryClassification(DatasetUtil.UciAdultLabel, "_Features_", useLgbm: false, useSdcaLogisticRegression: false, useLbfgsLogisticRegression: false)); experiment.SetDataset(context.Data.TrainTestSplit(data)) .SetBinaryClassificationMetric(BinaryClassificationMetric.AreaUnderRocCurve, DatasetUtil.UciAdultLabel) @@ -237,7 +237,7 @@ public async Task AutoMLExperiment_UCI_Adult_CV_5_Test() var data = DatasetUtil.GetUciAdultDataView(); var experiment = context.Auto().CreateExperiment(); var pipeline = context.Auto().Featurizer(data, "_Features_", excludeColumns: new[] { DatasetUtil.UciAdultLabel }) - .Append(context.Auto().BinaryClassification(DatasetUtil.UciAdultLabel, "_Features_", useLgbm: false, useSdca: false, useLbfgs: false)); + .Append(context.Auto().BinaryClassification(DatasetUtil.UciAdultLabel, "_Features_", useLgbm: false, useSdcaLogisticRegression: false, useLbfgsLogisticRegression: false)); experiment.SetDataset(data, 5) .SetBinaryClassificationMetric(BinaryClassificationMetric.AreaUnderRocCurve, DatasetUtil.UciAdultLabel) @@ -264,7 +264,7 @@ public async Task AutoMLExperiment_Iris_CV_5_Test() var label = "Label"; var pipeline = context.Auto().Featurizer(data, excludeColumns: new[] { label }) .Append(context.Transforms.Conversion.MapValueToKey(label, label)) - .Append(context.Auto().MultiClassification(label, useLgbm: false, useSdca: false, useLbfgs: false)); + .Append(context.Auto().MultiClassification(label, useLgbm: false, useSdcaMaximumEntrophy: false, useLbfgsMaximumEntrophy: false)); experiment.SetDataset(data, 5) .SetMulticlassClassificationMetric(MulticlassClassificationMetric.MacroAccuracy, label) @@ -291,7 +291,7 @@ public async Task AutoMLExperiment_Iris_Train_Test_Split_Test() var label = "Label"; var pipeline = context.Auto().Featurizer(data, excludeColumns: new[] { label }) .Append(context.Transforms.Conversion.MapValueToKey(label, label)) - .Append(context.Auto().MultiClassification(label, useLgbm: false, useSdca: false, useLbfgs: false)); + .Append(context.Auto().MultiClassification(label, useLgbm: false, useSdcaMaximumEntrophy: false, useLbfgsMaximumEntrophy: false)); experiment.SetDataset(context.Data.TrainTestSplit(data)) .SetMulticlassClassificationMetric(MulticlassClassificationMetric.MacroAccuracy, label) @@ -318,7 +318,7 @@ public async Task AutoMLExperiment_Taxi_Fare_Train_Test_Split_Test() var experiment = context.Auto().CreateExperiment(); var label = DatasetUtil.TaxiFareLabel; var pipeline = context.Auto().Featurizer(train, excludeColumns: new[] { label }) - .Append(context.Auto().Regression(label, useLgbm: false, useSdca: false, useLbfgs: false)); + .Append(context.Auto().Regression(label, useLgbm: false, useSdca: false, useLbfgsPoissonRegression: false)); experiment.SetDataset(train, test) .SetRegressionMetric(RegressionMetric.RSquared, label) @@ -337,7 +337,7 @@ public async Task AutoMLExperiment_Taxi_Fare_CV_5_Test() var experiment = context.Auto().CreateExperiment(); var label = DatasetUtil.TaxiFareLabel; var pipeline = context.Auto().Featurizer(train, excludeColumns: new[] { label }) - .Append(context.Auto().Regression(label, useLgbm: false, useSdca: false, useLbfgs: false)); + .Append(context.Auto().Regression(label, useLgbm: false, useSdca: false, useLbfgsPoissonRegression: false)); experiment.SetDataset(train, 5) .SetRegressionMetric(RegressionMetric.RSquared, label)