diff --git a/src/Microsoft.ML.AutoML/API/AutoCatalog.cs b/src/Microsoft.ML.AutoML/API/AutoCatalog.cs
index 280777db70..a965fcf832 100644
--- a/src/Microsoft.ML.AutoML/API/AutoCatalog.cs
+++ b/src/Microsoft.ML.AutoML/API/AutoCatalog.cs
@@ -10,6 +10,7 @@
using Microsoft.ML.Data;
using Microsoft.ML.Runtime;
using Microsoft.ML.SearchSpace;
+using Microsoft.ML.Trainers;
using Microsoft.ML.Trainers.FastTree;
namespace Microsoft.ML.AutoML
@@ -313,22 +314,37 @@ public AutoMLExperiment CreateExperiment(AutoMLExperiment.AutoMLExperimentSettin
/// true if use fast forest as available trainer.
/// true if use lgbm as available trainer.
/// true if use fast tree as available trainer.
- /// true if use lbfgs as available trainer.
- /// true if use sdca as available trainer.
+ /// true if use as available trainer.
+ /// true if use as available trainer.
/// if provided, use it as initial option for fast tree, otherwise the default option will be used.
/// if provided, use it as initial option for lgbm, otherwise the default option will be used.
/// if provided, use it as initial option for fast forest, otherwise the default option will be used.
- /// if provided, use it as initial option for lbfgs, otherwise the default option will be used.
- /// if provided, use it as initial option for sdca, otherwise the default option will be used.
+ /// if provided, use it as initial option for , otherwise the default option will be used.
+ /// if provided, use it as initial option for , otherwise the default option will be used.
/// if provided, use it as search space for fast tree, otherwise the default search space will be used.
/// if provided, use it as search space for lgbm, otherwise the default search space will be used.
/// if provided, use it as search space for fast forest, otherwise the default search space will be used.
- /// if provided, use it as search space for lbfgs, otherwise the default search space will be used.
- /// if provided, use it as search space for sdca, otherwise the default search space will be used.
+ /// if provided, use it as search space for , otherwise the default search space will be used.
+ /// if provided, use it as search space for , otherwise the default search space will be used.
///
- public SweepablePipeline BinaryClassification(string labelColumnName = DefaultColumnNames.Label, string featureColumnName = DefaultColumnNames.Features, string exampleWeightColumnName = null, bool useFastForest = true, bool useLgbm = true, bool useFastTree = true, bool useLbfgs = true, bool useSdca = true,
- FastTreeOption fastTreeOption = null, LgbmOption lgbmOption = null, FastForestOption fastForestOption = null, LbfgsOption lbfgsOption = null, SdcaOption sdcaOption = null,
- SearchSpace fastTreeSearchSpace = null, SearchSpace lgbmSearchSpace = null, SearchSpace fastForestSearchSpace = null, SearchSpace lbfgsSearchSpace = null, SearchSpace sdcaSearchSpace = null)
+ public SweepablePipeline BinaryClassification(string labelColumnName = DefaultColumnNames.Label,
+ string featureColumnName = DefaultColumnNames.Features,
+ string exampleWeightColumnName = null,
+ bool useFastForest = true,
+ bool useLgbm = true,
+ bool useFastTree = true,
+ bool useLbfgsLogisticRegression = true,
+ bool useSdcaLogisticRegression = true,
+ FastTreeOption fastTreeOption = null,
+ LgbmOption lgbmOption = null,
+ FastForestOption fastForestOption = null,
+ LbfgsOption lbfgsLogisticRegressionOption = null,
+ SdcaOption sdcaLogisticRegressionOption = null,
+ SearchSpace fastTreeSearchSpace = null,
+ SearchSpace lgbmSearchSpace = null,
+ SearchSpace fastForestSearchSpace = null,
+ SearchSpace lbfgsLogisticRegressionSearchSpace = null,
+ SearchSpace sdcaLogisticRegressionSearchSpace = null)
{
var res = new List();
@@ -359,22 +375,22 @@ public SweepablePipeline BinaryClassification(string labelColumnName = DefaultCo
res.Add(SweepableEstimatorFactory.CreateLightGbmBinary(lgbmOption, lgbmSearchSpace ?? new SearchSpace(lgbmOption)));
}
- if (useLbfgs)
+ if (useLbfgsLogisticRegression)
{
- lbfgsOption = lbfgsOption ?? new LbfgsOption();
- lbfgsOption.LabelColumnName = labelColumnName;
- lbfgsOption.FeatureColumnName = featureColumnName;
- lbfgsOption.ExampleWeightColumnName = exampleWeightColumnName;
- res.Add(SweepableEstimatorFactory.CreateLbfgsLogisticRegressionBinary(lbfgsOption, lbfgsSearchSpace ?? new SearchSpace(lbfgsOption)));
+ lbfgsLogisticRegressionOption = lbfgsLogisticRegressionOption ?? new LbfgsOption();
+ lbfgsLogisticRegressionOption.LabelColumnName = labelColumnName;
+ lbfgsLogisticRegressionOption.FeatureColumnName = featureColumnName;
+ lbfgsLogisticRegressionOption.ExampleWeightColumnName = exampleWeightColumnName;
+ res.Add(SweepableEstimatorFactory.CreateLbfgsLogisticRegressionBinary(lbfgsLogisticRegressionOption, lbfgsLogisticRegressionSearchSpace ?? new SearchSpace(lbfgsLogisticRegressionOption)));
}
- if (useSdca)
+ if (useSdcaLogisticRegression)
{
- sdcaOption = sdcaOption ?? new SdcaOption();
- sdcaOption.LabelColumnName = labelColumnName;
- sdcaOption.FeatureColumnName = featureColumnName;
- sdcaOption.ExampleWeightColumnName = exampleWeightColumnName;
- res.Add(SweepableEstimatorFactory.CreateSdcaLogisticRegressionBinary(sdcaOption, sdcaSearchSpace ?? new SearchSpace(sdcaOption)));
+ sdcaLogisticRegressionOption = sdcaLogisticRegressionOption ?? new SdcaOption();
+ sdcaLogisticRegressionOption.LabelColumnName = labelColumnName;
+ sdcaLogisticRegressionOption.FeatureColumnName = featureColumnName;
+ sdcaLogisticRegressionOption.ExampleWeightColumnName = exampleWeightColumnName;
+ res.Add(SweepableEstimatorFactory.CreateSdcaLogisticRegressionBinary(sdcaLogisticRegressionOption, sdcaLogisticRegressionSearchSpace ?? new SearchSpace(sdcaLogisticRegressionOption)));
}
return new SweepablePipeline().Append(res.ToArray());
@@ -389,22 +405,50 @@ public SweepablePipeline BinaryClassification(string labelColumnName = DefaultCo
/// true if use fast forest as available trainer.
/// true if use lgbm as available trainer.
/// true if use fast tree as available trainer.
- /// true if use lbfgs as available trainer.
- /// true if use sdca as available trainer.
+ /// true if use as available trainer.
+ /// true if use as available trainer.
+ /// true if use as available trainer.
+ /// true if use as available trainer.
/// if provided, use it as initial option for fast tree, otherwise the default option will be used.
/// if provided, use it as initial option for lgbm, otherwise the default option will be used.
/// if provided, use it as initial option for fast forest, otherwise the default option will be used.
- /// if provided, use it as initial option for lbfgs, otherwise the default option will be used.
- /// if provided, use it as initial option for sdca, otherwise the default option will be used.
+ /// if provided, use it as initial option for , otherwise the default option will be used.
+ /// if provided, use it as initial option for , otherwise the default option will be used.
+ /// if provided, use it as initial option for , otherwise the default option will be used.
+ /// if provided, use it as initial option for , otherwise the default option will be used.
/// if provided, use it as search space for fast tree, otherwise the default search space will be used.
/// if provided, use it as search space for lgbm, otherwise the default search space will be used.
/// if provided, use it as search space for fast forest, otherwise the default search space will be used.
- /// if provided, use it as search space for lbfgs, otherwise the default search space will be used.
- /// if provided, use it as search space for sdca, otherwise the default search space will be used.
+ /// if provided, use it as search space for , otherwise the default search space will be used.
+ /// if provided, use it as search space for , otherwise the default search space will be used.
+ /// if provided, use it as search space for , otherwise the default search space will be used.
+ /// if provided, use it as search space for , otherwise the default search space will be used.
///
- public SweepablePipeline MultiClassification(string labelColumnName = DefaultColumnNames.Label, string featureColumnName = DefaultColumnNames.Features, string exampleWeightColumnName = null, bool useFastForest = true, bool useLgbm = true, bool useFastTree = true, bool useLbfgs = true, bool useSdca = true,
- FastTreeOption fastTreeOption = null, LgbmOption lgbmOption = null, FastForestOption fastForestOption = null, LbfgsOption lbfgsOption = null, SdcaOption sdcaOption = null,
- SearchSpace fastTreeSearchSpace = null, SearchSpace lgbmSearchSpace = null, SearchSpace fastForestSearchSpace = null, SearchSpace lbfgsSearchSpace = null, SearchSpace sdcaSearchSpace = null)
+ public SweepablePipeline MultiClassification(
+ string labelColumnName = DefaultColumnNames.Label,
+ string featureColumnName = DefaultColumnNames.Features,
+ string exampleWeightColumnName = null,
+ bool useFastForest = true,
+ bool useLgbm = true,
+ bool useFastTree = true,
+ bool useLbfgsMaximumEntrophy = true,
+ bool useLbfgsLogisticRegression = true,
+ bool useSdcaMaximumEntrophy = true,
+ bool useSdcaLogisticRegression = true,
+ FastTreeOption fastTreeOption = null,
+ LgbmOption lgbmOption = null,
+ FastForestOption fastForestOption = null,
+ LbfgsOption lbfgsMaximumEntrophyOption = null,
+ LbfgsOption lbfgsLogisticRegressionOption = null,
+ SdcaOption sdcaMaximumEntrophyOption = null,
+ SdcaOption sdcaLogisticRegressionOption = null,
+ SearchSpace fastTreeSearchSpace = null,
+ SearchSpace lgbmSearchSpace = null,
+ SearchSpace fastForestSearchSpace = null,
+ SearchSpace lbfgsMaximumEntrophySearchSpace = null,
+ SearchSpace lbfgsLogisticRegressionSearchSpace = null,
+ SearchSpace sdcaMaximumEntorphySearchSpace = null,
+ SearchSpace sdcaLogisticRegressionSearchSpace = null)
{
var res = new List();
@@ -435,24 +479,41 @@ public SweepablePipeline MultiClassification(string labelColumnName = DefaultCol
res.Add(SweepableEstimatorFactory.CreateLightGbmMulti(lgbmOption, lgbmSearchSpace ?? new SearchSpace(lgbmOption)));
}
- if (useLbfgs)
+ if (useLbfgsLogisticRegression)
{
- lbfgsOption = lbfgsOption ?? new LbfgsOption();
- lbfgsOption.LabelColumnName = labelColumnName;
- lbfgsOption.FeatureColumnName = featureColumnName;
- lbfgsOption.ExampleWeightColumnName = exampleWeightColumnName;
- res.Add(SweepableEstimatorFactory.CreateLbfgsLogisticRegressionOva(lbfgsOption, lbfgsSearchSpace ?? new SearchSpace(lbfgsOption)));
- res.Add(SweepableEstimatorFactory.CreateLbfgsMaximumEntropyMulti(lbfgsOption, lbfgsSearchSpace ?? new SearchSpace(lbfgsOption)));
+ lbfgsLogisticRegressionOption = lbfgsLogisticRegressionOption ?? new LbfgsOption();
+ lbfgsLogisticRegressionOption.LabelColumnName = labelColumnName;
+ lbfgsLogisticRegressionOption.FeatureColumnName = featureColumnName;
+ lbfgsLogisticRegressionOption.ExampleWeightColumnName = exampleWeightColumnName;
+ res.Add(SweepableEstimatorFactory.CreateLbfgsLogisticRegressionOva(lbfgsLogisticRegressionOption, lbfgsLogisticRegressionSearchSpace ?? new SearchSpace(lbfgsLogisticRegressionOption)));
}
- if (useSdca)
+
+ if (useLbfgsMaximumEntrophy)
{
- sdcaOption = sdcaOption ?? new SdcaOption();
- sdcaOption.LabelColumnName = labelColumnName;
- sdcaOption.FeatureColumnName = featureColumnName;
- sdcaOption.ExampleWeightColumnName = exampleWeightColumnName;
- res.Add(SweepableEstimatorFactory.CreateSdcaMaximumEntropyMulti(sdcaOption, sdcaSearchSpace ?? new SearchSpace(sdcaOption)));
- res.Add(SweepableEstimatorFactory.CreateSdcaLogisticRegressionOva(sdcaOption, sdcaSearchSpace ?? new SearchSpace(sdcaOption)));
+ lbfgsMaximumEntrophyOption = lbfgsMaximumEntrophyOption ?? new LbfgsOption();
+ lbfgsMaximumEntrophyOption.LabelColumnName = labelColumnName;
+ lbfgsMaximumEntrophyOption.FeatureColumnName = featureColumnName;
+ lbfgsMaximumEntrophyOption.ExampleWeightColumnName = exampleWeightColumnName;
+ res.Add(SweepableEstimatorFactory.CreateLbfgsMaximumEntropyMulti(lbfgsMaximumEntrophyOption, lbfgsMaximumEntrophySearchSpace ?? new SearchSpace(lbfgsMaximumEntrophyOption)));
+ }
+
+ if (useSdcaMaximumEntrophy)
+ {
+ sdcaMaximumEntrophyOption = sdcaMaximumEntrophyOption ?? new SdcaOption();
+ sdcaMaximumEntrophyOption.LabelColumnName = labelColumnName;
+ sdcaMaximumEntrophyOption.FeatureColumnName = featureColumnName;
+ sdcaMaximumEntrophyOption.ExampleWeightColumnName = exampleWeightColumnName;
+ res.Add(SweepableEstimatorFactory.CreateSdcaMaximumEntropyMulti(sdcaMaximumEntrophyOption, sdcaMaximumEntorphySearchSpace ?? new SearchSpace(sdcaMaximumEntrophyOption)));
+ }
+
+ if (useSdcaLogisticRegression)
+ {
+ sdcaLogisticRegressionOption = sdcaLogisticRegressionOption ?? new SdcaOption();
+ sdcaLogisticRegressionOption.LabelColumnName = labelColumnName;
+ sdcaLogisticRegressionOption.FeatureColumnName = featureColumnName;
+ sdcaLogisticRegressionOption.ExampleWeightColumnName = exampleWeightColumnName;
+ res.Add(SweepableEstimatorFactory.CreateSdcaLogisticRegressionOva(sdcaLogisticRegressionOption, sdcaLogisticRegressionSearchSpace ?? new SearchSpace(sdcaLogisticRegressionOption)));
}
return new SweepablePipeline().Append(res.ToArray());
@@ -467,22 +528,38 @@ public SweepablePipeline MultiClassification(string labelColumnName = DefaultCol
/// true if use fast forest as available trainer.
/// true if use lgbm as available trainer.
/// true if use fast tree as available trainer.
- /// true if use lbfgs as available trainer.
- /// true if use sdca as available trainer.
+ /// true if use as available trainer.
+ /// true if use as available trainer.
/// if provided, use it as initial option for fast tree, otherwise the default option will be used.
/// if provided, use it as initial option for lgbm, otherwise the default option will be used.
/// if provided, use it as initial option for fast forest, otherwise the default option will be used.
- /// if provided, use it as initial option for lbfgs, otherwise the default option will be used.
- /// if provided, use it as initial option for sdca, otherwise the default option will be used.
+ /// if provided, use it as initial option for , otherwise the default option will be used.
+ /// if provided, use it as initial option for , otherwise the default option will be used.
/// if provided, use it as search space for fast tree, otherwise the default search space will be used.
/// if provided, use it as search space for lgbm, otherwise the default search space will be used.
/// if provided, use it as search space for fast forest, otherwise the default search space will be used.
- /// if provided, use it as search space for lbfgs, otherwise the default search space will be used.
+ /// if provided, use it as search space for , otherwise the default search space will be used.
/// if provided, use it as search space for sdca, otherwise the default search space will be used.
///
- public SweepablePipeline Regression(string labelColumnName = DefaultColumnNames.Label, string featureColumnName = DefaultColumnNames.Features, string exampleWeightColumnName = null, bool useFastForest = true, bool useLgbm = true, bool useFastTree = true, bool useLbfgs = true, bool useSdca = true,
- FastTreeOption fastTreeOption = null, LgbmOption lgbmOption = null, FastForestOption fastForestOption = null, LbfgsOption lbfgsOption = null, SdcaOption sdcaOption = null,
- SearchSpace fastTreeSearchSpace = null, SearchSpace lgbmSearchSpace = null, SearchSpace fastForestSearchSpace = null, SearchSpace lbfgsSearchSpace = null, SearchSpace sdcaSearchSpace = null)
+ public SweepablePipeline Regression(
+ string labelColumnName = DefaultColumnNames.Label,
+ string featureColumnName = DefaultColumnNames.Features,
+ string exampleWeightColumnName = null,
+ bool useFastForest = true,
+ bool useLgbm = true,
+ bool useFastTree = true,
+ bool useLbfgsPoissonRegression = true,
+ bool useSdca = true,
+ FastTreeOption fastTreeOption = null,
+ LgbmOption lgbmOption = null,
+ FastForestOption fastForestOption = null,
+ LbfgsOption lbfgsPoissonRegressionOption = null,
+ SdcaOption sdcaOption = null,
+ SearchSpace fastTreeSearchSpace = null,
+ SearchSpace lgbmSearchSpace = null,
+ SearchSpace fastForestSearchSpace = null,
+ SearchSpace lbfgsPoissonRegressionSearchSpace = null,
+ SearchSpace sdcaSearchSpace = null)
{
var res = new List();
@@ -513,13 +590,13 @@ public SweepablePipeline Regression(string labelColumnName = DefaultColumnNames.
res.Add(SweepableEstimatorFactory.CreateLightGbmRegression(lgbmOption, lgbmSearchSpace ?? new SearchSpace(lgbmOption)));
}
- if (useLbfgs)
+ if (useLbfgsPoissonRegression)
{
- lbfgsOption = lbfgsOption ?? new LbfgsOption();
- lbfgsOption.LabelColumnName = labelColumnName;
- lbfgsOption.FeatureColumnName = featureColumnName;
- lbfgsOption.ExampleWeightColumnName = exampleWeightColumnName;
- res.Add(SweepableEstimatorFactory.CreateLbfgsPoissonRegressionRegression(lbfgsOption, lbfgsSearchSpace ?? new SearchSpace(lbfgsOption)));
+ lbfgsPoissonRegressionOption = lbfgsPoissonRegressionOption ?? new LbfgsOption();
+ lbfgsPoissonRegressionOption.LabelColumnName = labelColumnName;
+ lbfgsPoissonRegressionOption.FeatureColumnName = featureColumnName;
+ lbfgsPoissonRegressionOption.ExampleWeightColumnName = exampleWeightColumnName;
+ res.Add(SweepableEstimatorFactory.CreateLbfgsPoissonRegressionRegression(lbfgsPoissonRegressionOption, lbfgsPoissonRegressionSearchSpace ?? new SearchSpace(lbfgsPoissonRegressionOption)));
}
if (useSdca)
diff --git a/src/Microsoft.ML.AutoML/API/BinaryClassificationExperiment.cs b/src/Microsoft.ML.AutoML/API/BinaryClassificationExperiment.cs
index f658a6f1aa..761aac2f4c 100644
--- a/src/Microsoft.ML.AutoML/API/BinaryClassificationExperiment.cs
+++ b/src/Microsoft.ML.AutoML/API/BinaryClassificationExperiment.cs
@@ -327,12 +327,12 @@ private SweepablePipeline CreateBinaryClassificationPipeline(IDataView trainData
if (preFeaturizer != null)
{
return preFeaturizer.Append(Context.Auto().Featurizer(trainData, columnInformation, Features))
- .Append(Context.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgs: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
+ .Append(Context.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdcaLogisticRegression: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsLogisticRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
}
else
{
return Context.Auto().Featurizer(trainData, columnInformation, Features)
- .Append(Context.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgs: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
+ .Append(Context.Auto().BinaryClassification(labelColumnName: columnInformation.LabelColumnName, useSdcaLogisticRegression: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsLogisticRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
}
}
}
diff --git a/src/Microsoft.ML.AutoML/API/MulticlassClassificationExperiment.cs b/src/Microsoft.ML.AutoML/API/MulticlassClassificationExperiment.cs
index 836eddedb5..b7344e7b0f 100644
--- a/src/Microsoft.ML.AutoML/API/MulticlassClassificationExperiment.cs
+++ b/src/Microsoft.ML.AutoML/API/MulticlassClassificationExperiment.cs
@@ -313,8 +313,9 @@ private protected override RunDetail GetBestRun
private SweepablePipeline CreateMulticlassClassificationPipeline(IDataView trainData, ColumnInformation columnInformation, IEstimator preFeaturizer = null)
{
- var useSdca = Settings.Trainers.Contains(MulticlassClassificationTrainer.SdcaMaximumEntropy);
- var uselbfgs = Settings.Trainers.Contains(MulticlassClassificationTrainer.LbfgsLogisticRegressionOva);
+ var useSdcaMaximumEntrophy = Settings.Trainers.Contains(MulticlassClassificationTrainer.SdcaMaximumEntropy);
+ var uselbfgsLR = Settings.Trainers.Contains(MulticlassClassificationTrainer.LbfgsLogisticRegressionOva);
+ var uselbfgsME = Settings.Trainers.Contains(MulticlassClassificationTrainer.LbfgsMaximumEntropy);
var useLgbm = Settings.Trainers.Contains(MulticlassClassificationTrainer.LightGbm);
var useFastForest = Settings.Trainers.Contains(MulticlassClassificationTrainer.FastForestOva);
var useFastTree = Settings.Trainers.Contains(MulticlassClassificationTrainer.FastTreeOva);
@@ -329,7 +330,7 @@ private SweepablePipeline CreateMulticlassClassificationPipeline(IDataView train
pipeline = pipeline.Append(Context.Auto().Featurizer(trainData, columnInformation, Features));
pipeline = pipeline.Append(Context.Transforms.Conversion.MapValueToKey(label, label));
- pipeline = pipeline.Append(Context.Auto().MultiClassification(label, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgs: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
+ pipeline = pipeline.Append(Context.Auto().MultiClassification(label, useSdcaMaximumEntrophy: useSdcaMaximumEntrophy, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsMaximumEntrophy: uselbfgsME, useLbfgsLogisticRegression: uselbfgsLR, useFastForest: useFastForest, featureColumnName: Features));
pipeline = pipeline.Append(Context.Transforms.Conversion.MapKeyToValue(DefaultColumnNames.PredictedLabel, DefaultColumnNames.PredictedLabel));
return pipeline;
diff --git a/src/Microsoft.ML.AutoML/API/RegressionExperiment.cs b/src/Microsoft.ML.AutoML/API/RegressionExperiment.cs
index a836b6c0c0..3d93a63b0a 100644
--- a/src/Microsoft.ML.AutoML/API/RegressionExperiment.cs
+++ b/src/Microsoft.ML.AutoML/API/RegressionExperiment.cs
@@ -310,7 +310,7 @@ private SweepablePipeline CreateRegressionPipeline(IDataView trainData, ColumnIn
var label = columnInformation.LabelColumnName;
pipeline = pipeline.Append(Context.Auto().Featurizer(trainData, columnInformation, Features));
- pipeline = pipeline.Append(Context.Auto().Regression(label, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgs: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
+ pipeline = pipeline.Append(Context.Auto().Regression(label, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsPoissonRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
return pipeline;
}
diff --git a/test/Microsoft.ML.AutoML.Tests/AutoMLExperimentTests.cs b/test/Microsoft.ML.AutoML.Tests/AutoMLExperimentTests.cs
index 6d14b266bb..18a0245718 100644
--- a/test/Microsoft.ML.AutoML.Tests/AutoMLExperimentTests.cs
+++ b/test/Microsoft.ML.AutoML.Tests/AutoMLExperimentTests.cs
@@ -212,7 +212,7 @@ public async Task AutoMLExperiment_UCI_Adult_Train_Test_Split_Test()
var data = DatasetUtil.GetUciAdultDataView();
var experiment = context.Auto().CreateExperiment();
var pipeline = context.Auto().Featurizer(data, "_Features_", excludeColumns: new[] { DatasetUtil.UciAdultLabel })
- .Append(context.Auto().BinaryClassification(DatasetUtil.UciAdultLabel, "_Features_", useLgbm: false, useSdca: false, useLbfgs: false));
+ .Append(context.Auto().BinaryClassification(DatasetUtil.UciAdultLabel, "_Features_", useLgbm: false, useSdcaLogisticRegression: false, useLbfgsLogisticRegression: false));
experiment.SetDataset(context.Data.TrainTestSplit(data))
.SetBinaryClassificationMetric(BinaryClassificationMetric.AreaUnderRocCurve, DatasetUtil.UciAdultLabel)
@@ -237,7 +237,7 @@ public async Task AutoMLExperiment_UCI_Adult_CV_5_Test()
var data = DatasetUtil.GetUciAdultDataView();
var experiment = context.Auto().CreateExperiment();
var pipeline = context.Auto().Featurizer(data, "_Features_", excludeColumns: new[] { DatasetUtil.UciAdultLabel })
- .Append(context.Auto().BinaryClassification(DatasetUtil.UciAdultLabel, "_Features_", useLgbm: false, useSdca: false, useLbfgs: false));
+ .Append(context.Auto().BinaryClassification(DatasetUtil.UciAdultLabel, "_Features_", useLgbm: false, useSdcaLogisticRegression: false, useLbfgsLogisticRegression: false));
experiment.SetDataset(data, 5)
.SetBinaryClassificationMetric(BinaryClassificationMetric.AreaUnderRocCurve, DatasetUtil.UciAdultLabel)
@@ -264,7 +264,7 @@ public async Task AutoMLExperiment_Iris_CV_5_Test()
var label = "Label";
var pipeline = context.Auto().Featurizer(data, excludeColumns: new[] { label })
.Append(context.Transforms.Conversion.MapValueToKey(label, label))
- .Append(context.Auto().MultiClassification(label, useLgbm: false, useSdca: false, useLbfgs: false));
+ .Append(context.Auto().MultiClassification(label, useLgbm: false, useSdcaMaximumEntrophy: false, useLbfgsMaximumEntrophy: false));
experiment.SetDataset(data, 5)
.SetMulticlassClassificationMetric(MulticlassClassificationMetric.MacroAccuracy, label)
@@ -291,7 +291,7 @@ public async Task AutoMLExperiment_Iris_Train_Test_Split_Test()
var label = "Label";
var pipeline = context.Auto().Featurizer(data, excludeColumns: new[] { label })
.Append(context.Transforms.Conversion.MapValueToKey(label, label))
- .Append(context.Auto().MultiClassification(label, useLgbm: false, useSdca: false, useLbfgs: false));
+ .Append(context.Auto().MultiClassification(label, useLgbm: false, useSdcaMaximumEntrophy: false, useLbfgsMaximumEntrophy: false));
experiment.SetDataset(context.Data.TrainTestSplit(data))
.SetMulticlassClassificationMetric(MulticlassClassificationMetric.MacroAccuracy, label)
@@ -318,7 +318,7 @@ public async Task AutoMLExperiment_Taxi_Fare_Train_Test_Split_Test()
var experiment = context.Auto().CreateExperiment();
var label = DatasetUtil.TaxiFareLabel;
var pipeline = context.Auto().Featurizer(train, excludeColumns: new[] { label })
- .Append(context.Auto().Regression(label, useLgbm: false, useSdca: false, useLbfgs: false));
+ .Append(context.Auto().Regression(label, useLgbm: false, useSdca: false, useLbfgsPoissonRegression: false));
experiment.SetDataset(train, test)
.SetRegressionMetric(RegressionMetric.RSquared, label)
@@ -337,7 +337,7 @@ public async Task AutoMLExperiment_Taxi_Fare_CV_5_Test()
var experiment = context.Auto().CreateExperiment();
var label = DatasetUtil.TaxiFareLabel;
var pipeline = context.Auto().Featurizer(train, excludeColumns: new[] { label })
- .Append(context.Auto().Regression(label, useLgbm: false, useSdca: false, useLbfgs: false));
+ .Append(context.Auto().Regression(label, useLgbm: false, useSdca: false, useLbfgsPoissonRegression: false));
experiment.SetDataset(train, 5)
.SetRegressionMetric(RegressionMetric.RSquared, label)