Skip to content

Commit ff4cd97

Browse files
committed
adding references to samples and regenerating catalog
1 parent 80bde05 commit ff4cd97

File tree

2 files changed

+14
-2
lines changed

2 files changed

+14
-2
lines changed

src/Microsoft.ML.StandardLearners/StandardLearnersCatalog.cs

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -564,6 +564,12 @@ public static LinearSvmTrainer LinearSupportVectorMachines(this BinaryClassifica
564564
/// This trainer can be used as a baseline for other more sophisticated mdels.
565565
/// </remarks>
566566
/// <param name="catalog">The <see cref="BinaryClassificationCatalog"/>.</param>
567+
/// <example>
568+
/// <format type="text/markdown">
569+
/// <![CDATA[
570+
/// [!code-csharp[FastTree](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/RandomTrainerSample.cs)]
571+
/// ]]></format>
572+
/// </example>
567573
public static RandomTrainer Random(this BinaryClassificationCatalog.BinaryClassificationTrainers catalog)
568574
{
569575
Contracts.CheckValue(catalog, nameof(catalog));
@@ -580,6 +586,12 @@ public static RandomTrainer Random(this BinaryClassificationCatalog.BinaryClassi
580586
/// <param name="catalog">The <see cref="BinaryClassificationCatalog"/>.</param>
581587
/// <param name="labelColumn">The name of the label column. </param>
582588
/// <param name="weightsColumn">The optional name of the weights column.</param>
589+
/// <example>
590+
/// <format type="text/markdown">
591+
/// <![CDATA[
592+
/// [!code-csharp[FastTree](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/PriorTrainerSample.cs)]
593+
/// ]]></format>
594+
/// </example>
583595
public static PriorTrainer Prior(this BinaryClassificationCatalog.BinaryClassificationTrainers catalog,
584596
string labelColumn = DefaultColumnNames.Label,
585597
string weightsColumn = null)

test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ Trainers.LightGbmRegressor LightGBM Regression Microsoft.ML.LightGBM.LightGbm Tr
6060
Trainers.LinearSvmBinaryClassifier Train a linear SVM. Microsoft.ML.Trainers.Online.LinearSvmTrainer TrainLinearSvm Microsoft.ML.Trainers.Online.LinearSvmTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
6161
Trainers.LogisticRegressionBinaryClassifier Logistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function. Microsoft.ML.Trainers.LogisticRegression TrainBinary Microsoft.ML.Trainers.LogisticRegression+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
6262
Trainers.LogisticRegressionClassifier Logistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function. Microsoft.ML.Trainers.LogisticRegression TrainMultiClass Microsoft.ML.Trainers.MulticlassLogisticRegression+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
63-
Trainers.NaiveBayesClassifier Train a MultiClassNaiveBayesTrainer. Microsoft.ML.Trainers.MultiClassNaiveBayesTrainer TrainMultiClassNaiveBayesTrainer Microsoft.ML.Trainers.MultiClassNaiveBayesTrainer+Arguments Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
63+
Trainers.NaiveBayesClassifier Train a MultiClassNaiveBayesTrainer. Microsoft.ML.Trainers.MultiClassNaiveBayesTrainer TrainMultiClassNaiveBayesTrainer Microsoft.ML.Trainers.MultiClassNaiveBayesTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
6464
Trainers.OnlineGradientDescentRegressor Train a Online gradient descent perceptron. Microsoft.ML.Trainers.Online.OnlineGradientDescentTrainer TrainRegression Microsoft.ML.Trainers.Online.OnlineGradientDescentTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
6565
Trainers.OrdinaryLeastSquaresRegressor Train an OLS regression model. Microsoft.ML.Trainers.HalLearners.OlsLinearRegressionTrainer TrainRegression Microsoft.ML.Trainers.HalLearners.OlsLinearRegressionTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
6666
Trainers.PcaAnomalyDetector Train an PCA Anomaly model. Microsoft.ML.Trainers.PCA.RandomizedPcaTrainer TrainPcaAnomaly Microsoft.ML.Trainers.PCA.RandomizedPcaTrainer+Arguments Microsoft.ML.EntryPoints.CommonOutputs+AnomalyDetectionOutput
@@ -126,7 +126,7 @@ Transforms.ScoreColumnSelector Selects only the last score columns and the extra
126126
Transforms.Scorer Turn the predictor model into a transform model Microsoft.ML.EntryPoints.ScoreModel MakeScoringTransform Microsoft.ML.EntryPoints.ScoreModel+ModelInput Microsoft.ML.EntryPoints.ScoreModel+Output
127127
Transforms.Segregator Un-groups vector columns into sequences of rows, inverse of Group transform Microsoft.ML.Transforms.GroupingOperations Ungroup Microsoft.ML.Transforms.UngroupTransform+Options Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput
128128
Transforms.SentimentAnalyzer Uses a pretrained sentiment model to score input strings Microsoft.ML.Transforms.Text.TextAnalytics AnalyzeSentiment Microsoft.ML.Transforms.Text.SentimentAnalyzingTransformer+Arguments Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput
129-
Transforms.TensorFlowScorer Transforms the data using the TensorFlow model. Microsoft.ML.Transforms.TensorFlowTransformer TensorFlowScorer Microsoft.ML.Transforms.TensorFlowTransformer+Options Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput
129+
Transforms.TensorFlowScorer Transforms the data using the TensorFlow model. Microsoft.ML.Transforms.TensorFlowTransformer TensorFlowScorer Microsoft.ML.Transforms.TensorFlowEstimator+Options Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput
130130
Transforms.TextFeaturizer A transform that turns a collection of text documents into numerical feature vectors. The feature vectors are normalized counts of (word and/or character) ngrams in a given tokenized text. Microsoft.ML.Transforms.Text.TextAnalytics TextTransform Microsoft.ML.Transforms.Text.TextFeaturizingEstimator+Arguments Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput
131131
Transforms.TextToKeyConverter Converts input values (words, numbers, etc.) to index in a dictionary. Microsoft.ML.Transforms.Categorical.Categorical TextToKey Microsoft.ML.Transforms.Conversions.ValueToKeyMappingTransformer+Options Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput
132132
Transforms.TrainTestDatasetSplitter Split the dataset into train and test sets Microsoft.ML.EntryPoints.TrainTestSplit Split Microsoft.ML.EntryPoints.TrainTestSplit+Input Microsoft.ML.EntryPoints.TrainTestSplit+Output

0 commit comments

Comments
 (0)