Skip to content

Commit e2a6094

Browse files
committed
Remove debugging tests
1 parent 5bfab70 commit e2a6094

File tree

1 file changed

+0
-88
lines changed

1 file changed

+0
-88
lines changed

test/Microsoft.ML.Tests/TrainerEstimators/OneDalEstimators.cs

Lines changed: 0 additions & 88 deletions
Original file line numberDiff line numberDiff line change
@@ -78,93 +78,5 @@ public void OneDalFastTreeBinaryEstimator()
7878

7979
Assert.True(testingMetrics.Accuracy > 0.8);
8080
}
81-
82-
83-
//[Fact]
84-
//[NativeDependencyFact("MatrixFactorizationNative")]
85-
[NativeDependencyFact("OneDalNative")]
86-
public void TestDependency()
87-
{
88-
var currentDir = AppContext.BaseDirectory;
89-
Output.WriteLine($"**** Running from directory {currentDir}.");
90-
91-
var dllDir = AppContext.GetData("NATIVE_DLL_SEARCH_DIRECTORIES").ToString();
92-
Output.WriteLine($"**** The search dir is {dllDir}.");
93-
94-
DependencyContext defaultContext = DependencyContext.Default;
95-
var currentRid = RuntimeEnvironment.GetRuntimeIdentifier();
96-
Output.WriteLine($"**** the current RID is {currentRid}.");
97-
98-
var runtimeLibs = defaultContext.RuntimeLibraries;
99-
try
100-
{
101-
// var candidates = runtimeLibs.Where(x => Regex.IsMatch(x.Name, ".*LightG.*", RegexOptions.IgnoreCase));
102-
var candidates = runtimeLibs.Where(x => Regex.IsMatch(x.Name, ".*onedal.*", RegexOptions.IgnoreCase));
103-
var possible = candidates.First();
104-
Output.WriteLine($"**** [{possible.Name}] found of a count of [ {candidates.Count()} ] .");
105-
var nativeAssets = possible.GetRuntimeNativeAssets(defaultContext, currentRid);
106-
Output.WriteLine($"**** With [ {nativeAssets.Count()} ] native assets");
107-
foreach (var na in nativeAssets)
108-
{
109-
Output.WriteLine($"**** -- nativeAsset: [ {na} ]");
110-
}
111-
}
112-
catch (Exception ex)
113-
{
114-
Output.WriteLine($"**** Had some trouble retrieving onedal: [ {ex.Message} ] .");
115-
}
116-
117-
Assert.True(true);
118-
}
119-
120-
//[Fact]
121-
[NativeDependencyFact("OneDalNative")]
122-
public void OneDalFastTreeBinaryEstimatorAtt()
123-
{
124-
Environment.SetEnvironmentVariable("MLNET_BACKEND", "ONEDAL");
125-
var trainDataPath = GetDataPath("binary_synth_data_train.csv");
126-
var testDataPath = GetDataPath("binary_synth_data_test.csv");
127-
128-
var loader = ML.Data.CreateTextLoader(columns: new[] {
129-
new TextLoader.Column("f0", DataKind.Single, 0),
130-
new TextLoader.Column("f1", DataKind.Single, 1),
131-
new TextLoader.Column("f2", DataKind.Single, 2),
132-
new TextLoader.Column("f3", DataKind.Single, 3),
133-
new TextLoader.Column("f4", DataKind.Single, 4),
134-
new TextLoader.Column("f5", DataKind.Single, 5),
135-
new TextLoader.Column("f6", DataKind.Single, 6),
136-
new TextLoader.Column("f7", DataKind.Single, 7),
137-
new TextLoader.Column("target", DataKind.Boolean,8)},
138-
separatorChar: ',',
139-
hasHeader: true);
140-
141-
var trainingData = loader.Load(trainDataPath);
142-
var testingData = loader.Load(testDataPath);
143-
144-
var preprocessingPipeline = ML.Transforms.Concatenate("Features", new string[] { "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7" });
145-
146-
var preprocessedTrainingData = preprocessingPipeline.Fit(trainingData).Transform(trainingData);
147-
var preprocessedTestingData = preprocessingPipeline.Fit(trainingData).Transform(testingData);
148-
149-
// Output.WriteLine($"**** After preprocessing the data got {preprocessedTrainingData.Schema.Count} columns.");
150-
151-
FastForestBinaryTrainer.Options options = new FastForestBinaryTrainer.Options();
152-
options.LabelColumnName = "target";
153-
options.FeatureColumnName = "Features";
154-
options.NumberOfTrees = 100;
155-
options.NumberOfLeaves = 128;
156-
options.MinimumExampleCountPerLeaf = 5;
157-
options.FeatureFraction = 1.0;
158-
159-
var trainer = ML.BinaryClassification.Trainers.FastForest(options);
160-
var model = trainer.Fit(preprocessedTrainingData);
161-
var trainingPredictions = model.Transform(preprocessedTrainingData);
162-
var trainingMetrics = ML.BinaryClassification.EvaluateNonCalibrated(trainingPredictions, labelColumnName: "target");
163-
var testingPredictions = model.Transform(preprocessedTestingData);
164-
var testingMetrics = ML.BinaryClassification.EvaluateNonCalibrated(testingPredictions, labelColumnName: "target");
165-
166-
Assert.True(testingMetrics.Accuracy > 0.8);
167-
}
168-
16981
}
17082
}

0 commit comments

Comments
 (0)