@@ -146,7 +146,7 @@ internal static class Defaults
146146 {
147147 public const int NumberOfTrees = 100 ;
148148 public const int NumberOfLeaves = 20 ;
149- public const int MinExampleCountInLeaves = 10 ;
149+ public const int MinimumExampleCountPerLeaf = 10 ;
150150 public const double LearningRate = 0.2 ;
151151 }
152152
@@ -320,7 +320,7 @@ public abstract class TreeOptions : LearnerInputBaseWithGroupId
320320 [ Argument ( ArgumentType . LastOccurenceWins , HelpText = "The minimal number of documents allowed in a leaf of a regression tree, out of the subsampled data" , ShortName = "mil,MinDocumentsInLeafs" , SortOrder = 3 ) ]
321321 [ TGUI ( Description = "Minimum number of training instances required to form a leaf" , SuggestedSweeps = "1,10,50" ) ]
322322 [ TlcModule . SweepableDiscreteParamAttribute ( "MinDocumentsInLeafs" , new object [ ] { 1 , 10 , 50 } ) ]
323- public int MinExampleCountPerLeaf = Defaults . MinExampleCountInLeaves ;
323+ public int MinExampleCountPerLeaf = Defaults . MinimumExampleCountPerLeaf ;
324324
325325 /// <summary>
326326 /// Total number of decision trees to create in the ensemble.
@@ -463,13 +463,13 @@ public abstract class BoostedTreeOptions : TreeOptions
463463 /// Number of post-bracket line search steps.
464464 /// </summary>
465465 [ Argument ( ArgumentType . LastOccurenceWins , HelpText = "Number of post-bracket line search steps" , ShortName = "lssteps,NumPostBracketSteps" ) ]
466- public int MaxNumberOfLinearSearchSteps ;
466+ public int MaximumNumberOfLineSearchSteps ;
467467
468468 /// <summary>
469469 /// Minimum line search step size.
470470 /// </summary>
471- [ Argument ( ArgumentType . LastOccurenceWins , HelpText = "Minimum line search step size" , ShortName = "minstep" ) ]
472- public Double MinStepSize ;
471+ [ Argument ( ArgumentType . LastOccurenceWins , HelpText = "Minimum line search step size" , ShortName = "minstep,MinStepSize " ) ]
472+ public Double MinimumStepSize ;
473473
474474 public enum OptimizationAlgorithmType { GradientDescent , AcceleratedGradientDescent , ConjugateGradientDescent } ;
475475
@@ -510,7 +510,7 @@ public enum OptimizationAlgorithmType { GradientDescent, AcceleratedGradientDesc
510510 /// </summary>
511511 [ Argument ( ArgumentType . AtMostOnce , HelpText = "The tolerance threshold for pruning" , ShortName = "prth" ) ]
512512 [ TGUI ( Description = "Pruning threshold" ) ]
513- public Double PruningThreshold = 0.004 ;
513+ public double PruningThreshold = 0.004 ;
514514
515515 /// <summary>
516516 /// The moving window size for pruning.
@@ -525,7 +525,7 @@ public enum OptimizationAlgorithmType { GradientDescent, AcceleratedGradientDesc
525525 [ Argument ( ArgumentType . LastOccurenceWins , HelpText = "The learning rate" , ShortName = "lr,LearningRates" , SortOrder = 4 ) ]
526526 [ TGUI ( Label = "Learning Rate" , SuggestedSweeps = "0.025-0.4;log" ) ]
527527 [ TlcModule . SweepableFloatParamAttribute ( "LearningRates" , 0.025f , 0.4f , isLogScale : true ) ]
528- public Double LearningRate = Defaults . LearningRate ;
528+ public double LearningRate = Defaults . LearningRate ;
529529
530530 /// <summary>
531531 /// Shrinkage.
@@ -559,7 +559,7 @@ public enum OptimizationAlgorithmType { GradientDescent, AcceleratedGradientDesc
559559 /// Upper bound on absolute value of single tree output.
560560 /// </summary>
561561 [ Argument ( ArgumentType . AtMostOnce , HelpText = "Upper bound on absolute value of single tree output" , ShortName = "mo" ) ]
562- public Double MaxTreeOutput = 100 ;
562+ public Double MaximumTreeOutput = 100 ;
563563
564564 /// <summary>
565565 /// Training starts from random ordering (determined by /r1).
@@ -630,14 +630,14 @@ internal override void Check(IExceptionContext ectx)
630630 {
631631 base . Check ( ectx ) ;
632632
633- ectx . CheckUserArg ( 0 <= MaxTreeOutput , nameof ( MaxTreeOutput ) , "Must be non-negative." ) ;
633+ ectx . CheckUserArg ( 0 <= MaximumTreeOutput , nameof ( MaximumTreeOutput ) , "Must be non-negative." ) ;
634634 ectx . CheckUserArg ( 0 <= PruningThreshold , nameof ( PruningThreshold ) , "Must be non-negative." ) ;
635635 ectx . CheckUserArg ( 0 < PruningWindowSize , nameof ( PruningWindowSize ) , "Must be positive." ) ;
636636 ectx . CheckUserArg ( 0 < Shrinkage , nameof ( Shrinkage ) , "Must be positive." ) ;
637637 ectx . CheckUserArg ( 0 <= DropoutRate && DropoutRate <= 1 , nameof ( DropoutRate ) , "Must be between 0 and 1." ) ;
638638 ectx . CheckUserArg ( 0 < GetDerivativesSampleRate , nameof ( GetDerivativesSampleRate ) , "Must be positive." ) ;
639- ectx . CheckUserArg ( 0 <= MaxNumberOfLinearSearchSteps , nameof ( MaxNumberOfLinearSearchSteps ) , "Must be non-negative." ) ;
640- ectx . CheckUserArg ( 0 <= MinStepSize , nameof ( MinStepSize ) , "Must be non-negative." ) ;
639+ ectx . CheckUserArg ( 0 <= MaximumNumberOfLineSearchSteps , nameof ( MaximumNumberOfLineSearchSteps ) , "Must be non-negative." ) ;
640+ ectx . CheckUserArg ( 0 <= MinimumStepSize , nameof ( MinimumStepSize ) , "Must be non-negative." ) ;
641641 }
642642 }
643643}
0 commit comments