Skip to content

Commit cd333c5

Browse files
authored
TrainTestSplit should be inside MLContext.Data (#2907)
* TrainTestSplit should be inside MLContext.Data * fix md files
1 parent 005fe05 commit cd333c5

File tree

47 files changed

+155
-157
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

47 files changed

+155
-157
lines changed

docs/code/MlNetCookBook.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -825,7 +825,7 @@ var pipeline =
825825
.Append(mlContext.MulticlassClassification.Trainers.StochasticDualCoordinateAscent());
826826

827827
// Split the data 90:10 into train and test sets, train and evaluate.
828-
var split = mlContext.MulticlassClassification.TrainTestSplit(data, testFraction: 0.1);
828+
var split = mlContext.Data.TrainTestSplit(data, testFraction: 0.1);
829829

830830
// Train the model.
831831
var model = pipeline.Fit(split.TrainSet);

docs/code/experimental/MlNetCookBookStaticApi.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -907,7 +907,7 @@ var learningPipeline = loader.MakeNewEstimator()
907907
Predictions: mlContext.MulticlassClassification.Trainers.Sdca(r.Label, r.Features)));
908908

909909
// Split the data 90:10 into train and test sets, train and evaluate.
910-
var (trainData, testData) = mlContext.MulticlassClassification.TrainTestSplit(data, testFraction: 0.1);
910+
var (trainData, testData) = mlContext.Data.TrainTestSplit(data, testFraction: 0.1);
911911

912912
// Train the model.
913913
var model = learningPipeline.Fit(trainData);

docs/samples/Microsoft.ML.Samples/Dynamic/LogisticRegression.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ public static void Example()
5757

5858
IDataView data = loader.Load(dataFilePath);
5959

60-
var split = ml.BinaryClassification.TrainTestSplit(data, testFraction: 0.2);
60+
var split = ml.Data.TrainTestSplit(data, testFraction: 0.2);
6161

6262
var pipeline = ml.Transforms.Concatenate("Text", "workclass", "education", "marital-status",
6363
"relationship", "ethnicity", "sex", "native-country")

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/AveragedPerceptron.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ public static void Example()
1616
var data = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
1717

1818
// Leave out 10% of data for testing.
19-
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.1);
19+
var trainTestData = mlContext.Data.TrainTestSplit(data, testFraction: 0.1);
2020

2121
// Create data training pipeline.
2222
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron(numIterations: 10);

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/AveragedPerceptronWithOptions.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ public static void Example()
1818
var data = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
1919

2020
// Leave out 10% of data for testing.
21-
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.1);
21+
var trainTestData = mlContext.Data.TrainTestSplit(data, testFraction: 0.1);
2222

2323
// Define the trainer options.
2424
var options = new AveragedPerceptronTrainer.Options()

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/Calibrators/FixedPlatt.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ public static void Example()
1515
// Download and featurize the dataset.
1616
var data = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
1717
// Leave out 10% of data for testing.
18-
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.3);
18+
var trainTestData = mlContext.Data.TrainTestSplit(data, testFraction: 0.3);
1919

2020
// Create data training pipeline for non calibrated trainer and train Naive calibrator on top of it.
2121
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron();

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/Calibrators/Isotonic.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ public static void Example()
1515
// Download and featurize the dataset.
1616
var data = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
1717
// Leave out 10% of data for testing.
18-
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.3);
18+
var trainTestData = mlContext.Data.TrainTestSplit(data, testFraction: 0.3);
1919

2020
// Create data training pipeline for non calibrated trainer and train Naive calibrator on top of it.
2121
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron();

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/Calibrators/Naive.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ public static void Example()
1515
// Download and featurize the dataset.
1616
var data = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
1717
// Leave out 10% of data for testing.
18-
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.3);
18+
var trainTestData = mlContext.Data.TrainTestSplit(data, testFraction: 0.3);
1919

2020
// Create data training pipeline for non calibrated trainer and train Naive calibrator on top of it.
2121
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron();

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/Calibrators/Platt.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ public static void Example()
1515
// Download and featurize the dataset.
1616
var data = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
1717
// Leave out 10% of data for testing.
18-
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.3);
18+
var trainTestData = mlContext.Data.TrainTestSplit(data, testFraction: 0.3);
1919

2020
// Create data training pipeline for non calibrated trainer and train Naive calibrator on top of it.
2121
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron();

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/LightGbm.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ public static void Example()
1212
var dataview = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
1313

1414
// Leave out 10% of data for testing.
15-
var split = mlContext.BinaryClassification.TrainTestSplit(dataview, testFraction: 0.1);
15+
var split = mlContext.Data.TrainTestSplit(dataview, testFraction: 0.1);
1616

1717
// Create the Estimator.
1818
var pipeline = mlContext.BinaryClassification.Trainers.LightGbm();

0 commit comments

Comments
 (0)