Skip to content

Commit 9f87099

Browse files
rogancarrshauheen
authored andcommitted
Updating OVA tests. (#2956)
1 parent a6a9d9d commit 9f87099

File tree

1 file changed

+2
-60
lines changed

1 file changed

+2
-60
lines changed

test/Microsoft.ML.Functional.Tests/Training.cs

Lines changed: 2 additions & 60 deletions
Original file line numberDiff line numberDiff line change
@@ -451,23 +451,12 @@ public void MetacomponentsFunctionAsExpectedOva()
451451
separatorChar: TestDatasets.iris.fileSeparator);
452452

453453
// Create a model training an OVA trainer with a binary classifier.
454-
var anomalyDetectionTrainer = mlContext.AnomalyDetection.Trainers.RandomizedPca();
455-
var anomalyDetectionPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features)
456-
.AppendCacheCheckpoint(mlContext)
457-
.Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
458-
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(anomalyDetectionTrainer))
459-
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
460-
461-
// Fit the binary classification pipeline.
462-
Assert.Throws<InvalidOperationException>(() => anomalyDetectionPipeline.Fit(data));
463-
464-
// Create a model training an OVA trainer with a binary classifier.
465-
var binaryclassificationTrainer = mlContext.BinaryClassification.Trainers.LogisticRegression(
454+
var binaryClassificationTrainer = mlContext.BinaryClassification.Trainers.LogisticRegression(
466455
new LogisticRegressionBinaryClassificationTrainer.Options { MaximumNumberOfIterations = 10, NumberOfThreads = 1, });
467456
var binaryClassificationPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features)
468457
.AppendCacheCheckpoint(mlContext)
469458
.Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
470-
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(binaryclassificationTrainer));
459+
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(binaryClassificationTrainer));
471460

472461
// Fit the binary classification pipeline.
473462
var binaryClassificationModel = binaryClassificationPipeline.Fit(data);
@@ -477,53 +466,6 @@ public void MetacomponentsFunctionAsExpectedOva()
477466

478467
// Evaluate the model.
479468
var binaryClassificationMetrics = mlContext.MulticlassClassification.Evaluate(binaryClassificationPredictions);
480-
481-
// Create a model training an OVA trainer with a clustering trainer.
482-
var kmeansTrainer = mlContext.Clustering.Trainers.KMeans(
483-
new KMeansTrainer.Options { MaximumNumberOfIterations = 10, NumberOfThreads = 1, });
484-
485-
Assert.Throws<ArgumentOutOfRangeException>(() =>
486-
mlContext.Transforms.Concatenate("Features", Iris.Features)
487-
.AppendCacheCheckpoint(mlContext)
488-
.Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
489-
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(kmeansTrainer))
490-
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")));
491-
492-
// Create a model training an OVA trainer with a multiclass classification trainer.
493-
var multiclassTrainer = mlContext.MulticlassClassification.Trainers.LogisticRegression(
494-
new LogisticRegressionMulticlassClassificationTrainer.Options { MaximumNumberOfIterations = 10, NumberOfThreads = 1, });
495-
Assert.Throws<ArgumentOutOfRangeException>(() =>
496-
mlContext.Transforms.Concatenate("Features", Iris.Features)
497-
.AppendCacheCheckpoint(mlContext)
498-
.Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
499-
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(multiclassTrainer))
500-
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")));
501-
502-
// Create a model training an OVA trainer with a ranking trainer.
503-
var rankingTrainer = mlContext.Ranking.Trainers.FastTree(
504-
new FastTreeRankingTrainer.Options { NumberOfTrees = 2, NumberOfThreads = 1, });
505-
// Todo #2920: Make this fail somehow.
506-
var rankingPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features)
507-
.AppendCacheCheckpoint(mlContext)
508-
.Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
509-
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(rankingTrainer))
510-
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
511-
512-
// Fit the invalid pipeline.
513-
Assert.Throws<ArgumentOutOfRangeException>(() => rankingPipeline.Fit(data));
514-
515-
// Create a model training an OVA trainer with a regressor.
516-
var regressionTrainer = mlContext.Regression.Trainers.PoissonRegression(
517-
new PoissonRegressionTrainer.Options { MaximumNumberOfIterations = 10, NumberOfThreads = 1, });
518-
// Todo #2920: Make this fail somehow.
519-
var regressionPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features)
520-
.AppendCacheCheckpoint(mlContext)
521-
.Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
522-
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(regressionTrainer))
523-
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
524-
525-
// Fit the invalid pipeline.
526-
Assert.Throws<ArgumentOutOfRangeException>(() => regressionPipeline.Fit(data));
527469
}
528470
}
529471
}

0 commit comments

Comments
 (0)