@@ -21,10 +21,10 @@ public static class LightGbmStaticExtensions
2121 /// <param name="label">The label column.</param>
2222 /// <param name="features">The features column.</param>
2323 /// <param name="weights">The weights column.</param>
24- /// <param name="numLeaves">The number of leaves to use.</param>
25- /// <param name="numBoostRound">Number of iterations.</param>
26- /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
24+ /// <param name="numberOfLeaves">The number of leaves to use.</param>
25+ /// <param name="minimumDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
2726 /// <param name="learningRate">The learning rate.</param>
27+ /// <param name="numberOfIterations">Number of iterations.</param>
2828 /// <param name="onFit">A delegate that is called every time the
2929 /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the
3030 /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive
@@ -39,19 +39,19 @@ public static class LightGbmStaticExtensions
3939 /// </example>
4040 public static Scalar < float > LightGbm ( this RegressionCatalog . RegressionTrainers catalog ,
4141 Scalar < float > label , Vector < float > features , Scalar < float > weights = null ,
42- int ? numLeaves = null ,
43- int ? minDataPerLeaf = null ,
42+ int ? numberOfLeaves = null ,
43+ int ? minimumDataPerLeaf = null ,
4444 double ? learningRate = null ,
45- int numBoostRound = Options . Defaults . NumBoostRound ,
45+ int numberOfIterations = Options . Defaults . NumberOfIterations ,
4646 Action < LightGbmRegressionModelParameters > onFit = null )
4747 {
48- CheckUserValues ( label , features , weights , numLeaves , minDataPerLeaf , learningRate , numBoostRound , onFit ) ;
48+ CheckUserValues ( label , features , weights , numberOfLeaves , minimumDataPerLeaf , learningRate , numberOfIterations , onFit ) ;
4949
5050 var rec = new TrainerEstimatorReconciler . Regression (
5151 ( env , labelName , featuresName , weightsName ) =>
5252 {
53- var trainer = new LightGbmRegressorTrainer ( env , labelName , featuresName , weightsName , numLeaves ,
54- minDataPerLeaf , learningRate , numBoostRound ) ;
53+ var trainer = new LightGbmRegressorTrainer ( env , labelName , featuresName , weightsName , numberOfLeaves ,
54+ minimumDataPerLeaf , learningRate , numberOfIterations ) ;
5555 if ( onFit != null )
5656 return trainer . WithOnFitDelegate ( trans => onFit ( trans . Model ) ) ;
5757 return trainer ;
@@ -122,11 +122,13 @@ public static Scalar<float> LightGbm(this RegressionCatalog.RegressionTrainers c
122122 /// ]]></format>
123123 /// </example>
124124 public static ( Scalar < float > score , Scalar < float > probability , Scalar < bool > predictedLabel ) LightGbm ( this BinaryClassificationCatalog . BinaryClassificationTrainers catalog ,
125- Scalar < bool > label , Vector < float > features , Scalar < float > weights = null ,
125+ Scalar < bool > label ,
126+ Vector < float > features ,
127+ Scalar < float > weights = null ,
126128 int ? numLeaves = null ,
127129 int ? minDataPerLeaf = null ,
128130 double ? learningRate = null ,
129- int numBoostRound = Options . Defaults . NumBoostRound ,
131+ int numBoostRound = Options . Defaults . NumberOfIterations ,
130132 Action < CalibratedModelParametersBase < LightGbmBinaryModelParameters , PlattCalibrator > > onFit = null )
131133 {
132134 CheckUserValues ( label , features , weights , numLeaves , minDataPerLeaf , learningRate , numBoostRound , onFit ) ;
@@ -194,9 +196,9 @@ public static (Scalar<float> score, Scalar<float> probability, Scalar<bool> pred
194196 /// <param name="features">The features column.</param>
195197 /// <param name="groupId">The groupId column.</param>
196198 /// <param name="weights">The weights column.</param>
197- /// <param name="numLeaves ">The number of leaves to use.</param>
198- /// <param name="numBoostRound ">Number of iterations.</param>
199- /// <param name="minDataPerLeaf ">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
199+ /// <param name="numberOfLeaves ">The number of leaves to use.</param>
200+ /// <param name="numberOfIterations ">Number of iterations.</param>
201+ /// <param name="minimumDataPerLeaf ">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
200202 /// <param name="learningRate">The learning rate.</param>
201203 /// <param name="onFit">A delegate that is called every time the
202204 /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the
@@ -206,21 +208,24 @@ public static (Scalar<float> score, Scalar<float> probability, Scalar<bool> pred
206208 /// <returns>The set of output columns including in order the predicted binary classification score (which will range
207209 /// from negative to positive infinity), the calibrated prediction (from 0 to 1), and the predicted label.</returns>
208210 public static Scalar < float > LightGbm < TVal > ( this RankingCatalog . RankingTrainers catalog ,
209- Scalar < float > label , Vector < float > features , Key < uint , TVal > groupId , Scalar < float > weights = null ,
210- int ? numLeaves = null ,
211- int ? minDataPerLeaf = null ,
211+ Scalar < float > label ,
212+ Vector < float > features ,
213+ Key < uint , TVal > groupId ,
214+ Scalar < float > weights = null ,
215+ int ? numberOfLeaves = null ,
216+ int ? minimumDataPerLeaf = null ,
212217 double ? learningRate = null ,
213- int numBoostRound = Options . Defaults . NumBoostRound ,
218+ int numberOfIterations = Options . Defaults . NumberOfIterations ,
214219 Action < LightGbmRankingModelParameters > onFit = null )
215220 {
216- CheckUserValues ( label , features , weights , numLeaves , minDataPerLeaf , learningRate , numBoostRound , onFit ) ;
221+ CheckUserValues ( label , features , weights , numberOfLeaves , minimumDataPerLeaf , learningRate , numberOfIterations , onFit ) ;
217222 Contracts . CheckValue ( groupId , nameof ( groupId ) ) ;
218223
219224 var rec = new TrainerEstimatorReconciler . Ranker < TVal > (
220225 ( env , labelName , featuresName , groupIdName , weightsName ) =>
221226 {
222- var trainer = new LightGbmRankingTrainer ( env , labelName , featuresName , groupIdName , weightsName , numLeaves ,
223- minDataPerLeaf , learningRate , numBoostRound ) ;
227+ var trainer = new LightGbmRankingTrainer ( env , labelName , featuresName , groupIdName , weightsName , numberOfLeaves ,
228+ minimumDataPerLeaf , learningRate , numberOfIterations ) ;
224229
225230 if ( onFit != null )
226231 return trainer . WithOnFitDelegate ( trans => onFit ( trans . Model ) ) ;
@@ -279,10 +284,10 @@ public static Scalar<float> LightGbm<TVal>(this RankingCatalog.RankingTrainers c
279284 /// <param name="label">The label, or dependent variable.</param>
280285 /// <param name="features">The features, or independent variables.</param>
281286 /// <param name="weights">The weights column.</param>
282- /// <param name="numLeaves">The number of leaves to use.</param>
283- /// <param name="numBoostRound">Number of iterations.</param>
284- /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
287+ /// <param name="numberOfLeaves">The number of leaves to use.</param>
288+ /// <param name="minimumDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
285289 /// <param name="learningRate">The learning rate.</param>
290+ /// <param name="numberOfIterations">Number of iterations.</param>
286291 /// <param name="onFit">A delegate that is called every time the
287292 /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the
288293 /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive
@@ -301,19 +306,19 @@ public static (Vector<float> score, Key<uint, TVal> predictedLabel)
301306 Key < uint , TVal > label ,
302307 Vector < float > features ,
303308 Scalar < float > weights = null ,
304- int ? numLeaves = null ,
305- int ? minDataPerLeaf = null ,
309+ int ? numberOfLeaves = null ,
310+ int ? minimumDataPerLeaf = null ,
306311 double ? learningRate = null ,
307- int numBoostRound = Options . Defaults . NumBoostRound ,
312+ int numberOfIterations = Options . Defaults . NumberOfIterations ,
308313 Action < OvaModelParameters > onFit = null )
309314 {
310- CheckUserValues ( label , features , weights , numLeaves , minDataPerLeaf , learningRate , numBoostRound , onFit ) ;
315+ CheckUserValues ( label , features , weights , numberOfLeaves , minimumDataPerLeaf , learningRate , numberOfIterations , onFit ) ;
311316
312317 var rec = new TrainerEstimatorReconciler . MulticlassClassifier < TVal > (
313318 ( env , labelName , featuresName , weightsName ) =>
314319 {
315- var trainer = new LightGbmMulticlassTrainer ( env , labelName , featuresName , weightsName , numLeaves ,
316- minDataPerLeaf , learningRate , numBoostRound ) ;
320+ var trainer = new LightGbmMulticlassTrainer ( env , labelName , featuresName , weightsName , numberOfLeaves ,
321+ minimumDataPerLeaf , learningRate , numberOfIterations ) ;
317322
318323 if ( onFit != null )
319324 return trainer . WithOnFitDelegate ( trans => onFit ( trans . Model ) ) ;
0 commit comments