@@ -75,88 +75,88 @@ public void CrossValidateSentimentModelTest()
7575
7676 //Avergae of all folds.
7777 var metrics = cv . BinaryClassificationMetrics [ 0 ] ;
78- Assert . Equal ( 0.57023626091422708 , metrics . Accuracy , 4 ) ;
79- Assert . Equal ( 0.54960689910161487 , metrics . Auc , 1 ) ;
80- Assert . Equal ( 0.67048277219704255 , metrics . Auprc , 2 ) ;
78+ Assert . Equal ( 0.603235747303544 , metrics . Accuracy , 4 ) ;
79+ Assert . Equal ( 0.58811318075483943 , metrics . Auc , 4 ) ;
80+ Assert . Equal ( 0.70302385499183984 , metrics . Auprc , 4 ) ;
8181 Assert . Equal ( 0 , metrics . Entropy , 3 ) ;
82- Assert . Equal ( 0.68942642723130532 , metrics . F1Score , 4 ) ;
83- Assert . Equal ( 0.97695909611968434 , metrics . LogLoss , 3 ) ;
84- Assert . Equal ( - 3.050726259114541 , metrics . LogLossReduction , 3 ) ;
85- Assert . Equal ( 0.37553879310344829 , metrics . NegativePrecision , 3 ) ;
86- Assert . Equal ( 0.25683962264150945 , metrics . NegativeRecall , 3 ) ;
87- Assert . Equal ( 0.63428539173628362 , metrics . PositivePrecision , 3 ) ;
88- Assert . Equal ( 0.75795196364816619 , metrics . PositiveRecall ) ;
82+ Assert . Equal ( 0.71751777634130576 , metrics . F1Score , 4 ) ;
83+ Assert . Equal ( 0.95263103280238037 , metrics . LogLoss , 4 ) ;
84+ Assert . Equal ( - 0.39971801589876232 , metrics . LogLossReduction , 4 ) ;
85+ Assert . Equal ( 0.43965517241379309 , metrics . NegativePrecision , 4 ) ;
86+ Assert . Equal ( 0.26627358490566039 , metrics . NegativeRecall , 4 ) ;
87+ Assert . Equal ( 0.64937737441958632 , metrics . PositivePrecision , 4 ) ;
88+ Assert . Equal ( 0.8027426160337553 , metrics . PositiveRecall ) ;
8989 Assert . Null ( metrics . ConfusionMatrix ) ;
9090
9191 //Std. Deviation.
9292 metrics = cv . BinaryClassificationMetrics [ 1 ] ;
93- Assert . Equal ( 0.039933230611196011 , metrics . Accuracy , 4 ) ;
94- Assert . Equal ( 0.021066177821462407 , metrics . Auc , 1 ) ;
95- Assert . Equal ( 0.045842033921572725 , metrics . Auprc , 2 ) ;
93+ Assert . Equal ( 0.057781201848998764 , metrics . Accuracy , 4 ) ;
94+ Assert . Equal ( 0.04249579360413544 , metrics . Auc , 4 ) ;
95+ Assert . Equal ( 0.086083866074815427 , metrics . Auprc , 4 ) ;
9696 Assert . Equal ( 0 , metrics . Entropy , 3 ) ;
97- Assert . Equal ( 0.030085767890644915 , metrics . F1Score , 4 ) ;
98- Assert . Equal ( 0.032906777175141941 , metrics . LogLoss , 3 ) ;
99- Assert . Equal ( 0.86311349745170118 , metrics . LogLossReduction , 3 ) ;
100- Assert . Equal ( 0.030711206896551647 , metrics . NegativePrecision , 3 ) ;
101- Assert . Equal ( 0.068160377358490579 , metrics . NegativeRecall , 3 ) ;
102- Assert . Equal ( 0.051761119891622735 , metrics . PositivePrecision , 3 ) ;
103- Assert . Equal ( 0.0015417072379052127 , metrics . PositiveRecall ) ;
97+ Assert . Equal ( 0.04718810601163604 , metrics . F1Score , 4 ) ;
98+ Assert . Equal ( 0.063839715206238851 , metrics . LogLoss , 4 ) ;
99+ Assert . Equal ( 4.1937544629633878 , metrics . LogLossReduction , 4 ) ;
100+ Assert . Equal ( 0.060344827586206781 , metrics . NegativePrecision , 4 ) ;
101+ Assert . Equal ( 0.058726415094339748 , metrics . NegativeRecall , 4 ) ;
102+ Assert . Equal ( 0.057144364710848418 , metrics . PositivePrecision , 4 ) ;
103+ Assert . Equal ( 0.030590717299577637 , metrics . PositiveRecall ) ;
104104 Assert . Null ( metrics . ConfusionMatrix ) ;
105105
106106 //Fold 1.
107107 metrics = cv . BinaryClassificationMetrics [ 2 ] ;
108- Assert . Equal ( 0.53030303030303028 , metrics . Accuracy , 4 ) ;
109- Assert . Equal ( 0.52854072128015284 , metrics . Auc , 1 ) ;
110- Assert . Equal ( 0.62464073827546951 , metrics . Auprc , 2 ) ;
108+ Assert . Equal ( 0.54545454545454541 , metrics . Accuracy , 4 ) ;
109+ Assert . Equal ( 0.54561738715070451 , metrics . Auc , 4 ) ;
110+ Assert . Equal ( 0.61693998891702417 , metrics . Auprc , 4 ) ;
111111 Assert . Equal ( 0 , metrics . Entropy , 3 ) ;
112- Assert . Equal ( 0.65934065934065933 , metrics . F1Score , 4 ) ;
113- Assert . Equal ( 1.0098658732948276 , metrics . LogLoss , 3 ) ;
114- Assert . Equal ( - 3.9138397565662424 , metrics . LogLossReduction , 3 ) ;
115- Assert . Equal ( 0.34482758620689657 , metrics . NegativePrecision , 3 ) ;
116- Assert . Equal ( 0.18867924528301888 , metrics . NegativeRecall , 3 ) ;
117- Assert . Equal ( 0.58252427184466016 , metrics . PositivePrecision , 3 ) ;
118- Assert . Equal ( 0.759493670886076 , metrics . PositiveRecall ) ;
112+ Assert . Equal ( 0.67032967032967028 , metrics . F1Score , 4 ) ;
113+ Assert . Equal ( 1.0164707480086188 , metrics . LogLoss , 4 ) ;
114+ Assert . Equal ( - 4.59347247886215 , metrics . LogLossReduction , 4 ) ;
115+ Assert . Equal ( 0.37931034482758619 , metrics . NegativePrecision , 4 ) ;
116+ Assert . Equal ( 0.20754716981132076 , metrics . NegativeRecall , 4 ) ;
117+ Assert . Equal ( 0.59223300970873782 , metrics . PositivePrecision , 4 ) ;
118+ Assert . Equal ( 0.77215189873417722 , metrics . PositiveRecall ) ;
119119
120120 var matrix = metrics . ConfusionMatrix ;
121121 Assert . Equal ( 2 , matrix . Order ) ;
122122 Assert . Equal ( 2 , matrix . ClassNames . Count ) ;
123123 Assert . Equal ( "positive" , matrix . ClassNames [ 0 ] ) ;
124124 Assert . Equal ( "negative" , matrix . ClassNames [ 1 ] ) ;
125125
126- Assert . Equal ( 60 , matrix [ 0 , 0 ] ) ;
127- Assert . Equal ( 60 , matrix [ "positive" , "positive" ] ) ;
128- Assert . Equal ( 19 , matrix [ 0 , 1 ] ) ;
129- Assert . Equal ( 19 , matrix [ "positive" , "negative" ] ) ;
126+ Assert . Equal ( 61 , matrix [ 0 , 0 ] ) ;
127+ Assert . Equal ( 61 , matrix [ "positive" , "positive" ] ) ;
128+ Assert . Equal ( 18 , matrix [ 0 , 1 ] ) ;
129+ Assert . Equal ( 18 , matrix [ "positive" , "negative" ] ) ;
130130
131- Assert . Equal ( 43 , matrix [ 1 , 0 ] ) ;
132- Assert . Equal ( 43 , matrix [ "negative" , "positive" ] ) ;
133- Assert . Equal ( 10 , matrix [ 1 , 1 ] ) ;
134- Assert . Equal ( 10 , matrix [ "negative" , "negative" ] ) ;
131+ Assert . Equal ( 42 , matrix [ 1 , 0 ] ) ;
132+ Assert . Equal ( 42 , matrix [ "negative" , "positive" ] ) ;
133+ Assert . Equal ( 11 , matrix [ 1 , 1 ] ) ;
134+ Assert . Equal ( 11 , matrix [ "negative" , "negative" ] ) ;
135135
136136 //Fold 2.
137137 metrics = cv . BinaryClassificationMetrics [ 3 ] ;
138- Assert . Equal ( 0.61016949152542377 , metrics . Accuracy , 4 ) ;
139- Assert . Equal ( 0.57067307692307689 , metrics . Auc , 1 ) ;
140- Assert . Equal ( 0.71632480611861549 , metrics . Auprc , 2 ) ;
138+ Assert . Equal ( 0.66101694915254239 , metrics . Accuracy , 4 ) ;
139+ Assert . Equal ( 0.63060897435897434 , metrics . Auc , 4 ) ;
140+ Assert . Equal ( 0.7891077210666555 , metrics . Auprc , 4 ) ;
141141 Assert . Equal ( 0 , metrics . Entropy , 3 ) ;
142- Assert . Equal ( 0.71951219512195119 , metrics . F1Score , 4 ) ;
143- Assert . Equal ( 0.94405231894454111 , metrics . LogLoss , 3 ) ;
144- Assert . Equal ( - 2.1876127616628396 , metrics . LogLossReduction , 3 ) ;
145- Assert . Equal ( 0.40625 , metrics . NegativePrecision , 3 ) ;
142+ Assert . Equal ( 0.76470588235294124 , metrics . F1Score , 4 ) ;
143+ Assert . Equal ( 0.88879131759614194 , metrics . LogLoss , 4 ) ;
144+ Assert . Equal ( 3.7940364470646255 , metrics . LogLossReduction , 4 ) ;
145+ Assert . Equal ( 0.5 , metrics . NegativePrecision , 3 ) ;
146146 Assert . Equal ( 0.325 , metrics . NegativeRecall , 3 ) ;
147- Assert . Equal ( 0.686046511627907 , metrics . PositivePrecision , 3 ) ;
148- Assert . Equal ( 0.75641025641025639 , metrics . PositiveRecall ) ;
147+ Assert . Equal ( 0.70652173913043481 , metrics . PositivePrecision , 4 ) ;
148+ Assert . Equal ( 0.83333333333333337 , metrics . PositiveRecall ) ;
149149
150150 matrix = metrics . ConfusionMatrix ;
151151 Assert . Equal ( 2 , matrix . Order ) ;
152152 Assert . Equal ( 2 , matrix . ClassNames . Count ) ;
153153 Assert . Equal ( "positive" , matrix . ClassNames [ 0 ] ) ;
154154 Assert . Equal ( "negative" , matrix . ClassNames [ 1 ] ) ;
155155
156- Assert . Equal ( 59 , matrix [ 0 , 0 ] ) ;
157- Assert . Equal ( 59 , matrix [ "positive" , "positive" ] ) ;
158- Assert . Equal ( 19 , matrix [ 0 , 1 ] ) ;
159- Assert . Equal ( 19 , matrix [ "positive" , "negative" ] ) ;
156+ Assert . Equal ( 65 , matrix [ 0 , 0 ] ) ;
157+ Assert . Equal ( 65 , matrix [ "positive" , "positive" ] ) ;
158+ Assert . Equal ( 13 , matrix [ 0 , 1 ] ) ;
159+ Assert . Equal ( 13 , matrix [ "positive" , "negative" ] ) ;
160160
161161 Assert . Equal ( 27 , matrix [ 1 , 0 ] ) ;
162162 Assert . Equal ( 27 , matrix [ "negative" , "positive" ] ) ;
@@ -180,11 +180,11 @@ private void ValidateBinaryMetricsLightGBM(BinaryClassificationMetrics metrics)
180180
181181 Assert . Equal ( .6111 , metrics . Accuracy , 4 ) ;
182182 Assert . Equal ( .8 , metrics . Auc , 1 ) ;
183- Assert . Equal ( .85 , metrics . Auprc , 2 ) ;
183+ Assert . Equal ( 0.88 , metrics . Auprc , 2 ) ;
184184 Assert . Equal ( 1 , metrics . Entropy , 3 ) ;
185185 Assert . Equal ( .72 , metrics . F1Score , 4 ) ;
186- Assert . Equal ( .952 , metrics . LogLoss , 3 ) ;
187- Assert . Equal ( 4.777 , metrics . LogLossReduction , 3 ) ;
186+ Assert . Equal ( 0.96456100297125325 , metrics . LogLoss , 4 ) ;
187+ Assert . Equal ( 3.5438997028746755 , metrics . LogLossReduction , 4 ) ;
188188 Assert . Equal ( 1 , metrics . NegativePrecision , 3 ) ;
189189 Assert . Equal ( .222 , metrics . NegativeRecall , 3 ) ;
190190 Assert . Equal ( .562 , metrics . PositivePrecision , 3 ) ;
@@ -211,16 +211,16 @@ private void ValidateBinaryMetricsLightGBM(BinaryClassificationMetrics metrics)
211211 private void ValidateBinaryMetrics ( BinaryClassificationMetrics metrics )
212212 {
213213
214- Assert . Equal ( .5556 , metrics . Accuracy , 4 ) ;
215- Assert . Equal ( .8 , metrics . Auc , 1 ) ;
216- Assert . Equal ( .87 , metrics . Auprc , 2 ) ;
214+ Assert . Equal ( 0.6111 , metrics . Accuracy , 4 ) ;
215+ Assert . Equal ( 0.6667 , metrics . Auc , 4 ) ;
216+ Assert . Equal ( 0.8621 , metrics . Auprc , 4 ) ;
217217 Assert . Equal ( 1 , metrics . Entropy , 3 ) ;
218- Assert . Equal ( .6923 , metrics . F1Score , 4 ) ;
219- Assert . Equal ( .969 , metrics . LogLoss , 3 ) ;
220- Assert . Equal ( 3.083 , metrics . LogLossReduction , 3 ) ;
221- Assert . Equal ( 1 , metrics . NegativePrecision , 3 ) ;
222- Assert . Equal ( .111 , metrics . NegativeRecall , 3 ) ;
223- Assert . Equal ( .529 , metrics . PositivePrecision , 3 ) ;
218+ Assert . Equal ( 0.72 , metrics . F1Score , 2 ) ;
219+ Assert . Equal ( 0.9689 , metrics . LogLoss , 4 ) ;
220+ Assert . Equal ( 3.1122 , metrics . LogLossReduction , 4 ) ;
221+ Assert . Equal ( 1 , metrics . NegativePrecision , 1 ) ;
222+ Assert . Equal ( 0.2222 , metrics . NegativeRecall , 4 ) ;
223+ Assert . Equal ( 0.5625 , metrics . PositivePrecision , 4 ) ;
224224 Assert . Equal ( 1 , metrics . PositiveRecall ) ;
225225
226226 var matrix = metrics . ConfusionMatrix ;
@@ -234,10 +234,10 @@ private void ValidateBinaryMetrics(BinaryClassificationMetrics metrics)
234234 Assert . Equal ( 0 , matrix [ 0 , 1 ] ) ;
235235 Assert . Equal ( 0 , matrix [ "positive" , "negative" ] ) ;
236236
237- Assert . Equal ( 8 , matrix [ 1 , 0 ] ) ;
238- Assert . Equal ( 8 , matrix [ "negative" , "positive" ] ) ;
239- Assert . Equal ( 1 , matrix [ 1 , 1 ] ) ;
240- Assert . Equal ( 1 , matrix [ "negative" , "negative" ] ) ;
237+ Assert . Equal ( 7 , matrix [ 1 , 0 ] ) ;
238+ Assert . Equal ( 7 , matrix [ "negative" , "positive" ] ) ;
239+ Assert . Equal ( 2 , matrix [ 1 , 1 ] ) ;
240+ Assert . Equal ( 2 , matrix [ "negative" , "negative" ] ) ;
241241 }
242242
243243 private LearningPipeline PreparePipeline ( )
@@ -344,7 +344,7 @@ private void ValidateExamples(PredictionModel<SentimentData, SentimentPrediction
344344 var predictions = model . Predict ( sentiments ) ;
345345 Assert . Equal ( 2 , predictions . Count ( ) ) ;
346346
347- Assert . True ( predictions . ElementAt ( 0 ) . Sentiment . IsFalse ) ;
347+ Assert . True ( predictions . ElementAt ( 0 ) . Sentiment . IsTrue ) ;
348348 Assert . True ( predictions . ElementAt ( 1 ) . Sentiment . IsTrue ) ;
349349
350350 }
0 commit comments