|
| 1 | +using System.Collections.Generic; |
| 2 | +using System.Linq; |
| 3 | +using Google.Protobuf; |
| 4 | +using Microsoft.ML.Data; |
| 5 | +using Microsoft.ML.Model.Onnx; |
| 6 | +using Microsoft.ML.RunTests; |
| 7 | +using Microsoft.ML.Transforms; |
| 8 | +using Xunit; |
| 9 | +using Xunit.Abstractions; |
| 10 | + |
| 11 | +namespace Microsoft.ML.Tests |
| 12 | +{ |
| 13 | + public class OnnxConversionTest : BaseTestBaseline |
| 14 | + { |
| 15 | + private class AdultData |
| 16 | + { |
| 17 | + [LoadColumn(0, 10), ColumnName("FeatureVector")] |
| 18 | + public float Features { get; set; } |
| 19 | + |
| 20 | + [LoadColumn(11)] |
| 21 | + public float Target { get; set; } |
| 22 | + } |
| 23 | + |
| 24 | + public OnnxConversionTest(ITestOutputHelper output) : base(output) |
| 25 | + { |
| 26 | + } |
| 27 | + |
| 28 | + [Fact] |
| 29 | + public void SimplePipelineOnnxConversionTest() |
| 30 | + { |
| 31 | + var trainDataPath = GetDataPath(TestDatasets.generatedRegressionDataset.trainFilename); |
| 32 | + var mlContext = new MLContext(); |
| 33 | + |
| 34 | + var trainData = mlContext.Data.ReadFromTextFile<AdultData>(trainDataPath, |
| 35 | + hasHeader: true, |
| 36 | + separatorChar: ';' |
| 37 | + ); |
| 38 | + |
| 39 | + var cachedTrainData = mlContext.Data.Cache(trainData); |
| 40 | + |
| 41 | + var dynamicPipeline = |
| 42 | + mlContext.Transforms.Normalize("FeatureVector") |
| 43 | + .AppendCacheCheckpoint(mlContext) |
| 44 | + .Append(mlContext.Regression.Trainers.StochasticDualCoordinateAscent(labelColumn: "Target", featureColumn: "FeatureVector")); |
| 45 | + |
| 46 | + var model = dynamicPipeline.Fit(trainData); |
| 47 | + var transformedData = model.Transform(trainData); |
| 48 | + |
| 49 | + var onnxModel = TransformerChainOnnxConverter.Convert(model, trainData.Schema); |
| 50 | + |
| 51 | + var onnxFileName = "model.onnx"; |
| 52 | + var onnxFilePath = GetOutputPath(onnxFileName); |
| 53 | + using (var file = (mlContext as IHostEnvironment).CreateOutputFile(onnxFilePath)) |
| 54 | + using (var stream = file.CreateWriteStream()) |
| 55 | + onnxModel.WriteTo(stream); |
| 56 | + |
| 57 | + string[] inputNames = onnxModel.Graph.Input.Select(valueInfoProto => valueInfoProto.Name).ToArray(); |
| 58 | + string[] outputNames = onnxModel.Graph.Output.Select(valueInfoProto => valueInfoProto.Name).ToArray(); |
| 59 | + var onnxEstimator = new OnnxScoringEstimator(mlContext, onnxFilePath, inputNames, outputNames); |
| 60 | + var onnxTransformer = onnxEstimator.Fit(trainData); |
| 61 | + var onnxResult = onnxTransformer.Transform(trainData); |
| 62 | + |
| 63 | + using (var expectedCursor = transformedData.GetRowCursor(columnIndex => columnIndex == transformedData.Schema["Score"].Index)) |
| 64 | + using (var actualCursor = onnxResult.GetRowCursor(columnIndex => columnIndex == onnxResult.Schema["Score0"].Index)) |
| 65 | + { |
| 66 | + float expected = default; |
| 67 | + VBuffer<float> actual = default; |
| 68 | + var expectedGetter = expectedCursor.GetGetter<float>(transformedData.Schema["Score"].Index); |
| 69 | + var actualGetter = actualCursor.GetGetter<VBuffer<float>>(onnxResult.Schema["Score0"].Index); |
| 70 | + while(expectedCursor.MoveNext() && actualCursor.MoveNext()) |
| 71 | + { |
| 72 | + expectedGetter(ref expected); |
| 73 | + actualGetter(ref actual); |
| 74 | + |
| 75 | + Assert.Equal(expected, actual.GetValues()[0], 1); |
| 76 | + } |
| 77 | + } |
| 78 | + } |
| 79 | + } |
| 80 | +} |
0 commit comments