|
10 | 10 | namespace Microsoft.ML.Data |
11 | 11 | { |
12 | 12 | /// <summary> |
13 | | - /// Evaluation results for multi-class classifiers. |
| 13 | + /// Evaluation results for multi-class classification trainers. |
14 | 14 | /// </summary> |
15 | | - public sealed class MultiClassClassifierMetrics |
| 15 | + public sealed class MulticlassClassificationMetrics |
16 | 16 | { |
17 | 17 | /// <summary> |
18 | 18 | /// Gets the average log-loss of the classifier. |
@@ -83,22 +83,22 @@ public sealed class MultiClassClassifierMetrics |
83 | 83 | /// </remarks> |
84 | 84 | public IReadOnlyList<double> PerClassLogLoss { get; } |
85 | 85 |
|
86 | | - internal MultiClassClassifierMetrics(IExceptionContext ectx, DataViewRow overallResult, int topK) |
| 86 | + internal MulticlassClassificationMetrics(IExceptionContext ectx, DataViewRow overallResult, int topK) |
87 | 87 | { |
88 | 88 | double FetchDouble(string name) => RowCursorUtils.Fetch<double>(ectx, overallResult, name); |
89 | | - MicroAccuracy = FetchDouble(MultiClassClassifierEvaluator.AccuracyMicro); |
90 | | - MacroAccuracy = FetchDouble(MultiClassClassifierEvaluator.AccuracyMacro); |
91 | | - LogLoss = FetchDouble(MultiClassClassifierEvaluator.LogLoss); |
92 | | - LogLossReduction = FetchDouble(MultiClassClassifierEvaluator.LogLossReduction); |
| 89 | + MicroAccuracy = FetchDouble(MulticlassClassificationEvaluator.AccuracyMicro); |
| 90 | + MacroAccuracy = FetchDouble(MulticlassClassificationEvaluator.AccuracyMacro); |
| 91 | + LogLoss = FetchDouble(MulticlassClassificationEvaluator.LogLoss); |
| 92 | + LogLossReduction = FetchDouble(MulticlassClassificationEvaluator.LogLossReduction); |
93 | 93 | TopK = topK; |
94 | 94 | if (topK > 0) |
95 | | - TopKAccuracy = FetchDouble(MultiClassClassifierEvaluator.TopKAccuracy); |
| 95 | + TopKAccuracy = FetchDouble(MulticlassClassificationEvaluator.TopKAccuracy); |
96 | 96 |
|
97 | | - var perClassLogLoss = RowCursorUtils.Fetch<VBuffer<double>>(ectx, overallResult, MultiClassClassifierEvaluator.PerClassLogLoss); |
| 97 | + var perClassLogLoss = RowCursorUtils.Fetch<VBuffer<double>>(ectx, overallResult, MulticlassClassificationEvaluator.PerClassLogLoss); |
98 | 98 | PerClassLogLoss = perClassLogLoss.DenseValues().ToImmutableArray(); |
99 | 99 | } |
100 | 100 |
|
101 | | - internal MultiClassClassifierMetrics(double accuracyMicro, double accuracyMacro, double logLoss, double logLossReduction, |
| 101 | + internal MulticlassClassificationMetrics(double accuracyMicro, double accuracyMacro, double logLoss, double logLossReduction, |
102 | 102 | int topK, double topKAccuracy, double[] perClassLogLoss) |
103 | 103 | { |
104 | 104 | MicroAccuracy = accuracyMicro; |
|
0 commit comments