Skip to content

Commit 71693b3

Browse files
authored
Cleaning TrainCatalog and RecommenderCatalog (#2973)
1 parent 8ed72fb commit 71693b3

File tree

21 files changed

+176
-176
lines changed

21 files changed

+176
-176
lines changed

docs/code/MlNetCookBook.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -376,7 +376,7 @@ var testData = mlContext.Data.LoadFromTextFile<AdultData>(testDataPath,
376376
separatorChar: ','
377377
);
378378
// Calculate metrics of the model on the test data.
379-
var metrics = mlContext.Regression.Evaluate(model.Transform(testData), label: "Target");
379+
var metrics = mlContext.Regression.Evaluate(model.Transform(testData), labelColumnName: "Target");
380380
```
381381

382382
## How do I save and load the model?

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/PriorTrainerSample.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ public static void Example()
4747

4848
// Step 4: Evaluate on the test set
4949
var transformedData = trainedPipeline.Transform(loader.Load(testFile));
50-
var evalMetrics = mlContext.BinaryClassification.Evaluate(transformedData, label: "Sentiment");
50+
var evalMetrics = mlContext.BinaryClassification.Evaluate(transformedData, labelColumnName: "Sentiment");
5151
SamplesUtils.ConsoleUtils.PrintMetrics(evalMetrics);
5252

5353
// The Prior trainer outputs the proportion of a label in the dataset as the probability of that label.

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/StochasticDualCoordinateAscent.cs

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ public static void Example()
5252
.Append(mlContext.BinaryClassification.Trainers.SdcaNonCalibrated(labelColumnName: "Sentiment", featureColumnName: "Features", l2Regularization: 0.001f));
5353

5454
// Step 3: Run Cross-Validation on this pipeline.
55-
var cvResults = mlContext.BinaryClassification.CrossValidate(data, pipeline, labelColumn: "Sentiment");
55+
var cvResults = mlContext.BinaryClassification.CrossValidate(data, pipeline, labelColumnName: "Sentiment");
5656

5757
var accuracies = cvResults.Select(r => r.Metrics.Accuracy);
5858
Console.WriteLine(accuracies.Average());
@@ -69,7 +69,7 @@ public static void Example()
6969
}));
7070

7171
// Run Cross-Validation on this second pipeline.
72-
var cvResults_advancedPipeline = mlContext.BinaryClassification.CrossValidate(data, pipeline, labelColumn: "Sentiment", numFolds: 3);
72+
var cvResults_advancedPipeline = mlContext.BinaryClassification.CrossValidate(data, pipeline, labelColumnName: "Sentiment", numberOfFolds: 3);
7373
accuracies = cvResults_advancedPipeline.Select(r => r.Metrics.Accuracy);
7474
Console.WriteLine(accuracies.Average());
7575

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/MulticlassClassification/LightGbm.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ public static void Example()
4646
var dataWithPredictions = model.Transform(split.TestSet);
4747

4848
// Evaluate the trained model using the test set.
49-
var metrics = mlContext.MulticlassClassification.Evaluate(dataWithPredictions, label: "LabelIndex");
49+
var metrics = mlContext.MulticlassClassification.Evaluate(dataWithPredictions, labelColumnName: "LabelIndex");
5050

5151
// Check if metrics are reasonable.
5252
Console.WriteLine($"Macro accuracy: {metrics.MacroAccuracy:F4}, Micro accuracy: {metrics.MicroAccuracy:F4}.");

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/MulticlassClassification/LightGbmWithOptions.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ public static void Example()
5757
var dataWithPredictions = model.Transform(split.TestSet);
5858

5959
// Evaluate the trained model using the test set.
60-
var metrics = mlContext.MulticlassClassification.Evaluate(dataWithPredictions, label: "LabelIndex");
60+
var metrics = mlContext.MulticlassClassification.Evaluate(dataWithPredictions, labelColumnName: "LabelIndex");
6161

6262
// Check if metrics are reasonable.
6363
Console.WriteLine($"Macro accuracy: {metrics.MacroAccuracy:F4}, Micro accuracy: {metrics.MicroAccuracy:F4}.");

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Ranking/LightGbm.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ public static void Example()
1414
// Leave out 10% of the dataset for testing. Since this is a ranking problem, we must ensure that the split
1515
// respects the GroupId column, i.e. rows with the same GroupId are either all in the train split or all in
1616
// the test split. The samplingKeyColumn parameter in Data.TrainTestSplit is used for this purpose.
17-
var split = mlContext.Data.TrainTestSplit(dataview, testFraction: 0.1, samplingKeyColumn: "GroupId");
17+
var split = mlContext.Data.TrainTestSplit(dataview, testFraction: 0.1, samplingKeyColumnName: "GroupId");
1818

1919
// Create the Estimator pipeline. For simplicity, we will train a small tree with 4 leaves and 2 boosting iterations.
2020
var pipeline = mlContext.Ranking.Trainers.LightGbm(

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Ranking/LightGbmWithOptions.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ public static void Example()
1717
// Leave out 10% of the dataset for testing. Since this is a ranking problem, we must ensure that the split
1818
// respects the GroupId column, i.e. rows with the same GroupId are either all in the train split or all in
1919
// the test split. The samplingKeyColumn parameter in Data.TrainTestSplit is used for this purpose.
20-
var split = mlContext.Data.TrainTestSplit(dataview, testFraction: 0.1, samplingKeyColumn: "GroupId");
20+
var split = mlContext.Data.TrainTestSplit(dataview, testFraction: 0.1, samplingKeyColumnName: "GroupId");
2121

2222
// Create the Estimator pipeline. For simplicity, we will train a small tree with 4 leaves and 2 boosting iterations.
2323
var pipeline = mlContext.Ranking.Trainers.LightGbm(

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Recommendation/MatrixFactorization.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ public static void Example()
3636

3737
// Calculate regression matrices for the prediction result.
3838
var metrics = mlContext.Recommendation().Evaluate(prediction,
39-
label: nameof(MatrixElement.Value), score: nameof(MatrixElementForScore.Score));
39+
labelColumnName: nameof(MatrixElement.Value), scoreColumnName: nameof(MatrixElementForScore.Score));
4040
// Print out some metrics for checking the model's quality.
4141
SamplesUtils.ConsoleUtils.PrintMetrics(metrics);
4242
// L1: 0.17

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Recommendation/MatrixFactorizationWithOptions.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ public static void Example()
4646

4747
// Calculate regression matrices for the prediction result.
4848
var metrics = mlContext.Recommendation().Evaluate(prediction,
49-
label: nameof(MatrixElement.Value), score: nameof(MatrixElementForScore.Score));
49+
labelColumnName: nameof(MatrixElement.Value), scoreColumnName: nameof(MatrixElementForScore.Score));
5050
// Print out some metrics for checking the model's quality.
5151
SamplesUtils.ConsoleUtils.PrintMetrics(metrics);
5252
// L1: 0.16

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/LightGbm.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ public static void Example()
5151

5252
// Evaluate how the model is doing on the test data.
5353
var dataWithPredictions = model.Transform(split.TestSet);
54-
var metrics = mlContext.Regression.Evaluate(dataWithPredictions, label: labelName);
54+
var metrics = mlContext.Regression.Evaluate(dataWithPredictions, labelColumnName: labelName);
5555
SamplesUtils.ConsoleUtils.PrintMetrics(metrics);
5656

5757
// Expected output

0 commit comments

Comments
 (0)