|
| 1 | + |
| 2 | +using System; |
| 3 | +using System.Collections.Generic; |
| 4 | +using System.IO; |
| 5 | +using System.IO.Compression; |
| 6 | +using System.Linq; |
| 7 | +using System.Net; |
| 8 | +using System.Threading; |
| 9 | +using System.Threading.Tasks; |
| 10 | +using Microsoft.ML; |
| 11 | +using Microsoft.ML.Data; |
| 12 | +using Microsoft.ML.Transforms; |
| 13 | +using static Microsoft.ML.DataOperationsCatalog; |
| 14 | + |
| 15 | +namespace Samples.Dynamic |
| 16 | +{ |
| 17 | + public class LearningRateSchedulingCifarResnetTransferLearning |
| 18 | + { |
| 19 | + public static void Example() |
| 20 | + { |
| 21 | + string assetsRelativePath = @"../../../assets"; |
| 22 | + string assetsPath = GetAbsolutePath(assetsRelativePath); |
| 23 | + |
| 24 | + var outputMlNetModelFilePath = Path.Combine(assetsPath, "outputs", |
| 25 | + "imageClassifier.zip"); |
| 26 | + |
| 27 | + string imagesDownloadFolderPath = Path.Combine(assetsPath, "inputs", |
| 28 | + "images"); |
| 29 | + |
| 30 | + // Download Cifar Dataset. |
| 31 | + string finalImagesFolderName = DownloadImageSet( |
| 32 | + imagesDownloadFolderPath); |
| 33 | + string finalImagesFolderNameTrain = "cifar\\train"; |
| 34 | + string fullImagesetFolderPathTrain = Path.Combine( |
| 35 | + imagesDownloadFolderPath, finalImagesFolderNameTrain); |
| 36 | + |
| 37 | + string finalImagesFolderNameTest = "cifar\\test"; |
| 38 | + string fullImagesetFolderPathTest = Path.Combine( |
| 39 | + imagesDownloadFolderPath, finalImagesFolderNameTest); |
| 40 | + |
| 41 | + try |
| 42 | + { |
| 43 | + |
| 44 | + MLContext mlContext = new MLContext(seed: 1); |
| 45 | + |
| 46 | + //Load all the original train images info |
| 47 | + IEnumerable<ImageData> train_images = LoadImagesFromDirectory( |
| 48 | + folder: fullImagesetFolderPathTrain, useFolderNameAsLabel: true); |
| 49 | + IDataView trainDataset = mlContext.Data.LoadFromEnumerable(train_images); |
| 50 | + trainDataset = mlContext.Transforms.Conversion |
| 51 | + .MapValueToKey("Label") |
| 52 | + .Append(mlContext.Transforms.LoadImages("Image", |
| 53 | + fullImagesetFolderPathTrain, false, "ImagePath")) |
| 54 | + .Fit(trainDataset) |
| 55 | + .Transform(trainDataset); |
| 56 | + |
| 57 | + //Load all the original test images info |
| 58 | + IEnumerable<ImageData> test_images = LoadImagesFromDirectory( |
| 59 | + folder: fullImagesetFolderPathTest, useFolderNameAsLabel: true); |
| 60 | + IDataView testDataset = mlContext.Data.LoadFromEnumerable(test_images); |
| 61 | + testDataset = mlContext.Transforms.Conversion |
| 62 | + .MapValueToKey("Label") |
| 63 | + .Append(mlContext.Transforms.LoadImages("Image", |
| 64 | + fullImagesetFolderPathTest, false, "ImagePath")) |
| 65 | + .Fit(testDataset) |
| 66 | + .Transform(testDataset); |
| 67 | + |
| 68 | + var options = new ImageClassificationEstimator.Options() |
| 69 | + { |
| 70 | + FeaturesColumnName = "Image", |
| 71 | + LabelColumnName = "Label", |
| 72 | + // Just by changing/selecting InceptionV3/MobilenetV2 here instead of |
| 73 | + // ResnetV2101 you can try a different architecture/ |
| 74 | + // pre-trained model. |
| 75 | + Arch = ImageClassificationEstimator.Architecture.ResnetV2101, |
| 76 | + Epoch = 182, |
| 77 | + BatchSize = 128, |
| 78 | + LearningRate = 0.01f, |
| 79 | + MetricsCallback = (metrics) => Console.WriteLine(metrics), |
| 80 | + ValidationSet = testDataset, |
| 81 | + DisableEarlyStopping = true, |
| 82 | + ReuseValidationSetBottleneckCachedValues = false, |
| 83 | + ReuseTrainSetBottleneckCachedValues = false, |
| 84 | + // Use linear scaling rule and Learning rate decay as an option |
| 85 | + // This is known to do well for Cifar dataset and Resnet models |
| 86 | + // You can also try other types of Learning rate scheduling methods |
| 87 | + // available in LearningRateScheduler.cs |
| 88 | + LearningRateScheduler = new LsrDecay() |
| 89 | + }; |
| 90 | + |
| 91 | + var pipeline = mlContext.Model.ImageClassification(options) |
| 92 | + .Append(mlContext.Transforms.Conversion.MapKeyToValue( |
| 93 | + outputColumnName: "PredictedLabel", |
| 94 | + inputColumnName: "PredictedLabel")); |
| 95 | + |
| 96 | + |
| 97 | + Console.WriteLine("*** Training the image classification model " + |
| 98 | + "with DNN Transfer Learning on top of the selected " + |
| 99 | + "pre-trained model/architecture ***"); |
| 100 | + |
| 101 | + // Measuring training time |
| 102 | + var watch = System.Diagnostics.Stopwatch.StartNew(); |
| 103 | + |
| 104 | + var trainedModel = pipeline.Fit(trainDataset); |
| 105 | + |
| 106 | + watch.Stop(); |
| 107 | + long elapsedMs = watch.ElapsedMilliseconds; |
| 108 | + |
| 109 | + Console.WriteLine("Training with transfer learning took: " + |
| 110 | + (elapsedMs / 1000).ToString() + " seconds"); |
| 111 | + |
| 112 | + mlContext.Model.Save(trainedModel, testDataset.Schema, |
| 113 | + "model.zip"); |
| 114 | + |
| 115 | + ITransformer loadedModel; |
| 116 | + DataViewSchema schema; |
| 117 | + using (var file = File.OpenRead("model.zip")) |
| 118 | + loadedModel = mlContext.Model.Load(file, out schema); |
| 119 | + |
| 120 | + EvaluateModel(mlContext, testDataset, loadedModel); |
| 121 | + |
| 122 | + watch = System.Diagnostics.Stopwatch.StartNew(); |
| 123 | + |
| 124 | + // Predict image class using an in-memory image. |
| 125 | + TrySinglePrediction(fullImagesetFolderPathTest, mlContext, loadedModel); |
| 126 | + |
| 127 | + watch.Stop(); |
| 128 | + elapsedMs = watch.ElapsedMilliseconds; |
| 129 | + |
| 130 | + Console.WriteLine("Prediction engine took: " + |
| 131 | + (elapsedMs / 1000).ToString() + " seconds"); |
| 132 | + } |
| 133 | + catch (Exception ex) |
| 134 | + { |
| 135 | + Console.WriteLine(ex.ToString()); |
| 136 | + } |
| 137 | + |
| 138 | + Console.WriteLine("Press any key to finish"); |
| 139 | + Console.ReadKey(); |
| 140 | + } |
| 141 | + |
| 142 | + private static void TrySinglePrediction(string imagesForPredictions, |
| 143 | + MLContext mlContext, ITransformer trainedModel) |
| 144 | + { |
| 145 | + // Create prediction function to try one prediction |
| 146 | + var predictionEngine = mlContext.Model |
| 147 | + .CreatePredictionEngine<InMemoryImageData, ImagePrediction>(trainedModel); |
| 148 | + |
| 149 | + IEnumerable<InMemoryImageData> testImages = LoadInMemoryImagesFromDirectory( |
| 150 | + imagesForPredictions, false); |
| 151 | + |
| 152 | + InMemoryImageData imageToPredict = new InMemoryImageData |
| 153 | + { |
| 154 | + Image = testImages.First().Image |
| 155 | + }; |
| 156 | + |
| 157 | + var prediction = predictionEngine.Predict(imageToPredict); |
| 158 | + |
| 159 | + Console.WriteLine($"Scores : [{string.Join(",", prediction.Score)}], " + |
| 160 | + $"Predicted Label : {prediction.PredictedLabel}"); |
| 161 | + } |
| 162 | + |
| 163 | + |
| 164 | + private static void EvaluateModel(MLContext mlContext, |
| 165 | + IDataView testDataset, ITransformer trainedModel) |
| 166 | + { |
| 167 | + Console.WriteLine("Making bulk predictions and evaluating model's " + |
| 168 | + "quality..."); |
| 169 | + |
| 170 | + // Measuring time |
| 171 | + var watch2 = System.Diagnostics.Stopwatch.StartNew(); |
| 172 | + |
| 173 | + IDataView predictions = trainedModel.Transform(testDataset); |
| 174 | + var metrics = mlContext.MulticlassClassification.Evaluate(predictions); |
| 175 | + |
| 176 | + Console.WriteLine($"Micro-accuracy: {metrics.MicroAccuracy}," + |
| 177 | + $"macro-accuracy = {metrics.MacroAccuracy}"); |
| 178 | + |
| 179 | + watch2.Stop(); |
| 180 | + long elapsed2Ms = watch2.ElapsedMilliseconds; |
| 181 | + |
| 182 | + Console.WriteLine("Predicting and Evaluation took: " + |
| 183 | + (elapsed2Ms / 1000).ToString() + " seconds"); |
| 184 | + } |
| 185 | + |
| 186 | + public static IEnumerable<ImageData> LoadImagesFromDirectory(string folder, |
| 187 | + bool useFolderNameAsLabel = true) |
| 188 | + { |
| 189 | + var files = Directory.GetFiles(folder, "*", |
| 190 | + searchOption: SearchOption.AllDirectories); |
| 191 | + foreach (var file in files) |
| 192 | + { |
| 193 | + if (Path.GetExtension(file) != ".jpg" && |
| 194 | + Path.GetExtension(file) != ".JPEG" && |
| 195 | + Path.GetExtension(file) != ".png") |
| 196 | + continue; |
| 197 | + |
| 198 | + var label = Path.GetFileName(file); |
| 199 | + if (useFolderNameAsLabel) |
| 200 | + label = Directory.GetParent(file).Name; |
| 201 | + else |
| 202 | + { |
| 203 | + for (int index = 0; index < label.Length; index++) |
| 204 | + { |
| 205 | + if (!char.IsLetter(label[index])) |
| 206 | + { |
| 207 | + label = label.Substring(0, index); |
| 208 | + break; |
| 209 | + } |
| 210 | + } |
| 211 | + } |
| 212 | + |
| 213 | + yield return new ImageData() |
| 214 | + { |
| 215 | + ImagePath = file, |
| 216 | + Label = label |
| 217 | + }; |
| 218 | + |
| 219 | + } |
| 220 | + } |
| 221 | + |
| 222 | + public static IEnumerable<InMemoryImageData> |
| 223 | + LoadInMemoryImagesFromDirectory(string folder, |
| 224 | + bool useFolderNameAsLabel = true) |
| 225 | + { |
| 226 | + var files = Directory.GetFiles(folder, "*", |
| 227 | + searchOption: SearchOption.AllDirectories); |
| 228 | + foreach (var file in files) |
| 229 | + { |
| 230 | + if (Path.GetExtension(file) != ".jpg" && |
| 231 | + Path.GetExtension(file) != ".JPEG" && |
| 232 | + Path.GetExtension(file) != ".png") |
| 233 | + continue; |
| 234 | + |
| 235 | + var label = Path.GetFileName(file); |
| 236 | + if (useFolderNameAsLabel) |
| 237 | + label = Directory.GetParent(file).Name; |
| 238 | + else |
| 239 | + { |
| 240 | + for (int index = 0; index < label.Length; index++) |
| 241 | + { |
| 242 | + if (!char.IsLetter(label[index])) |
| 243 | + { |
| 244 | + label = label.Substring(0, index); |
| 245 | + break; |
| 246 | + } |
| 247 | + } |
| 248 | + } |
| 249 | + |
| 250 | + yield return new InMemoryImageData() |
| 251 | + { |
| 252 | + Image = File.ReadAllBytes(file), |
| 253 | + Label = label |
| 254 | + }; |
| 255 | + |
| 256 | + } |
| 257 | + } |
| 258 | + |
| 259 | + public static string DownloadImageSet(string imagesDownloadFolder) |
| 260 | + { |
| 261 | + // get a set of images to teach the network about the new classes |
| 262 | + // CIFAR dataset ( 50000 train images and 10000 test images ) |
| 263 | + string fileName = "cifar10.zip"; |
| 264 | + string url = $"https://tlcresources.blob.core.windows.net/datasets/cifar10.zip"; |
| 265 | + |
| 266 | + Download(url, imagesDownloadFolder, fileName); |
| 267 | + UnZip(Path.Combine(imagesDownloadFolder, fileName), imagesDownloadFolder); |
| 268 | + |
| 269 | + return Path.GetFileNameWithoutExtension(fileName); |
| 270 | + } |
| 271 | + |
| 272 | + public static bool Download(string url, string destDir, string destFileName) |
| 273 | + { |
| 274 | + if (destFileName == null) |
| 275 | + destFileName = url.Split(Path.DirectorySeparatorChar).Last(); |
| 276 | + |
| 277 | + Directory.CreateDirectory(destDir); |
| 278 | + |
| 279 | + string relativeFilePath = Path.Combine(destDir, destFileName); |
| 280 | + |
| 281 | + if (File.Exists(relativeFilePath)) |
| 282 | + { |
| 283 | + Console.WriteLine($"{relativeFilePath} already exists."); |
| 284 | + return false; |
| 285 | + } |
| 286 | + |
| 287 | + var wc = new WebClient(); |
| 288 | + Console.WriteLine($"Downloading {relativeFilePath}"); |
| 289 | + var download = Task.Run(() => wc.DownloadFile(url, relativeFilePath)); |
| 290 | + while (!download.IsCompleted) |
| 291 | + { |
| 292 | + Thread.Sleep(1000); |
| 293 | + Console.Write("."); |
| 294 | + } |
| 295 | + Console.WriteLine(""); |
| 296 | + Console.WriteLine($"Downloaded {relativeFilePath}"); |
| 297 | + |
| 298 | + return true; |
| 299 | + } |
| 300 | + |
| 301 | + public static void UnZip(String gzArchiveName, String destFolder) |
| 302 | + { |
| 303 | + var flag = gzArchiveName.Split(Path.DirectorySeparatorChar) |
| 304 | + .Last() |
| 305 | + .Split('.') |
| 306 | + .First() + ".bin"; |
| 307 | + |
| 308 | + if (File.Exists(Path.Combine(destFolder, flag))) return; |
| 309 | + |
| 310 | + Console.WriteLine($"Extracting."); |
| 311 | + var task = Task.Run(() => |
| 312 | + { |
| 313 | + ZipFile.ExtractToDirectory(gzArchiveName, destFolder); |
| 314 | + }); |
| 315 | + |
| 316 | + while (!task.IsCompleted) |
| 317 | + { |
| 318 | + Thread.Sleep(200); |
| 319 | + Console.Write("."); |
| 320 | + } |
| 321 | + |
| 322 | + File.Create(Path.Combine(destFolder, flag)); |
| 323 | + Console.WriteLine(""); |
| 324 | + Console.WriteLine("Extracting is completed."); |
| 325 | + } |
| 326 | + |
| 327 | + public static string GetAbsolutePath(string relativePath) |
| 328 | + { |
| 329 | + FileInfo _dataRoot = new FileInfo(typeof( |
| 330 | + ResnetV2101TransferLearningTrainTestSplit).Assembly.Location); |
| 331 | + |
| 332 | + string assemblyFolderPath = _dataRoot.Directory.FullName; |
| 333 | + |
| 334 | + string fullPath = Path.Combine(assemblyFolderPath, relativePath); |
| 335 | + |
| 336 | + return fullPath; |
| 337 | + } |
| 338 | + |
| 339 | + public class InMemoryImageData |
| 340 | + { |
| 341 | + [LoadColumn(0)] |
| 342 | + public byte[] Image; |
| 343 | + |
| 344 | + [LoadColumn(1)] |
| 345 | + public string Label; |
| 346 | + } |
| 347 | + |
| 348 | + public class ImageData |
| 349 | + { |
| 350 | + [LoadColumn(0)] |
| 351 | + public string ImagePath; |
| 352 | + |
| 353 | + [LoadColumn(1)] |
| 354 | + public string Label; |
| 355 | + } |
| 356 | + |
| 357 | + public class ImagePrediction |
| 358 | + { |
| 359 | + [ColumnName("Score")] |
| 360 | + public float[] Score; |
| 361 | + |
| 362 | + [ColumnName("PredictedLabel")] |
| 363 | + public string PredictedLabel; |
| 364 | + } |
| 365 | + } |
| 366 | +} |
0 commit comments