Skip to content

Commit 55ecb11

Browse files
committed
fixing samples
1 parent 49a3114 commit 55ecb11

File tree

2 files changed

+6
-20
lines changed

2 files changed

+6
-20
lines changed

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/PriorTrainerSample.cs

Lines changed: 3 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -38,14 +38,7 @@ public static void Example()
3838
var data = reader.Read(dataFile);
3939

4040
// Split it between training and test data
41-
var (train, test) = mlContext.BinaryClassification.TrainTestSplit(data);
42-
43-
// ML.NET doesn't cache data set by default. Therefore, if one reads a data set from a file and accesses it many times,
44-
// it can be slow due to expensive featurization and disk operations. When the considered data can fit into memory, a
45-
// solution is to cache the data in memory. Caching is especially helpful when working with iterative algorithms which
46-
// needs many data passes. Since SDCA is the case, we cache. Inserting a cache step in a pipeline is also possible,
47-
// please see the construction of pipeline below.
48-
data = mlContext.Data.Cache(data);
41+
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data);
4942

5043
// Step 2: Pipeline
5144
// Featurize the text column through the FeaturizeText API.
@@ -56,10 +49,10 @@ public static void Example()
5649
.Append(mlContext.BinaryClassification.Trainers.Prior(labelColumn: "Sentiment"));
5750

5851
// Step 3: Train the pipeline
59-
var trainedPipeline = pipeline.Fit(train);
52+
var trainedPipeline = pipeline.Fit(trainTestData.TrainSet);
6053

6154
// Step 4: Evaluate on the test set
62-
var transformedData = trainedPipeline.Transform(test);
55+
var transformedData = trainedPipeline.Transform(trainTestData.TestSet);
6356
var evalMetrics = mlContext.BinaryClassification.Evaluate(transformedData, label: "Sentiment");
6457

6558
// Step 5: Inspect the output

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/RandomTrainerSample.cs

Lines changed: 3 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -38,14 +38,7 @@ public static void Example()
3838
var data = reader.Read(dataFile);
3939

4040
// Split it between training and test data
41-
var (train, test) = mlContext.BinaryClassification.TrainTestSplit(data);
42-
43-
// ML.NET doesn't cache data set by default. Therefore, if one reads a data set from a file and accesses it many times,
44-
// it can be slow due to expensive featurization and disk operations. When the considered data can fit into memory, a
45-
// solution is to cache the data in memory. Caching is especially helpful when working with iterative algorithms which
46-
// needs many data passes. Since SDCA is the case, we cache. Inserting a cache step in a pipeline is also possible,
47-
// please see the construction of pipeline below.
48-
data = mlContext.Data.Cache(data);
41+
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data);
4942

5043
// Step 2: Pipeline
5144
// Featurize the text column through the FeaturizeText API.
@@ -56,10 +49,10 @@ public static void Example()
5649
.Append(mlContext.BinaryClassification.Trainers.Random());
5750

5851
// Step 3: Train the pipeline
59-
var trainedPipeline = pipeline.Fit(train);
52+
var trainedPipeline = pipeline.Fit(trainTestData.TrainSet);
6053

6154
// Step 4: Evaluate on the test set
62-
var transformedData = trainedPipeline.Transform(test);
55+
var transformedData = trainedPipeline.Transform(trainTestData.TestSet);
6356
var evalMetrics = mlContext.BinaryClassification.Evaluate(transformedData, label: "Sentiment");
6457

6558
// Step 5: Inspect the output

0 commit comments

Comments
 (0)