You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/Microsoft.ML.FastTree/FastTreeArguments.cs
+23-23Lines changed: 23 additions & 23 deletions
Original file line number
Diff line number
Diff line change
@@ -175,15 +175,15 @@ public abstract class TreeOptions : LearnerInputBaseWithGroupId
175
175
/// The seed of the random number generator.
176
176
/// </summary>
177
177
[Argument(ArgumentType.LastOccurenceWins,HelpText="The seed of the random number generator",ShortName="r1,RngSeed")]
178
-
publicintRandomSeed=123;
178
+
publicintSeed=123;
179
179
180
180
// this random seed is only for active feature selection
181
181
/// <summary>
182
182
/// The seed of the active feature selection.
183
183
/// </summary>
184
184
[Argument(ArgumentType.LastOccurenceWins,HelpText="The seed of the active feature selection",ShortName="r3,FeatureSelectSeed",Hide=true)]
185
185
[TGUI(NotGui=true)]
186
-
publicintFeatureSelectionRandomSeed=123;
186
+
publicintFeatureSelectionSeed=123;
187
187
188
188
/// <summary>
189
189
/// The entropy (regularization) coefficient between 0 and 1.
@@ -221,26 +221,26 @@ public abstract class TreeOptions : LearnerInputBaseWithGroupId
221
221
/// </summary>
222
222
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum categorical split groups to consider when splitting on a categorical feature. "+
223
223
"Split groups are a collection of split points. This is used to reduce overfitting when "+
224
-
"there many categorical features.",ShortName="mcg")]
225
-
publicintMaxCategoricalGroupsPerNode=64;
224
+
"there many categorical features.",ShortName="mcg,MaxCategoricalGroupsPerNode")]
225
+
publicintMaximumCategoricalGroupsPerNode=64;
226
226
227
227
/// <summary>
228
228
/// Maximum categorical split points to consider when splitting on a categorical feature.
229
229
/// </summary>
230
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum categorical split points to consider when splitting on a categorical feature.",ShortName="maxcat")]
231
-
publicintMaxCategoricalSplitPoints=64;
230
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum categorical split points to consider when splitting on a categorical feature.",ShortName="maxcat,MaxCategoricalSplitPoints")]
231
+
publicintMaximumCategoricalSplitPoints=64;
232
232
233
233
/// <summary>
234
-
/// Minimum categorical example percentage in a bin to consider for a split.
234
+
/// Minimum categorical example percentage in a bin to consider for a split. Default is 0.1% of all training examples.
235
235
/// </summary>
236
236
[Argument(ArgumentType.LastOccurenceWins,HelpText="Minimum categorical docs percentage in a bin to consider for a split.",ShortName="mdop,MinDocsPercentageForCategoricalSplit")]
/// Minimum categorical example count in a bin to consider for a split.
241
241
/// </summary>
242
242
[Argument(ArgumentType.LastOccurenceWins,HelpText="Minimum categorical doc count in a bin to consider for a split.",ShortName="mdo,MinDocsForCategoricalSplit")]
243
-
publicintMinExamplesForCategoricalSplit=100;
243
+
publicintMinimumExamplesForCategoricalSplit=100;
244
244
245
245
/// <summary>
246
246
/// Bias for calculating gradient for each feature bin for a categorical feature.
@@ -263,7 +263,7 @@ public abstract class TreeOptions : LearnerInputBaseWithGroupId
263
263
/// Maximum number of distinct values (bins) per feature.
264
264
/// </summary>
265
265
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum number of distinct values (bins) per feature",ShortName="mb,MaxBins")]
266
-
publicintMaxBinCountPerFeature=255;// save one for undefs
266
+
publicintMaximumBinCountPerFeature=255;// save one for undefs
267
267
268
268
/// <summary>
269
269
/// Sparsity level needed to use sparse feature representation.
@@ -300,8 +300,8 @@ public abstract class TreeOptions : LearnerInputBaseWithGroupId
300
300
/// <summary>
301
301
/// Print execution time breakdown to stdout.
302
302
/// </summary>
303
-
[Argument(ArgumentType.AtMostOnce,HelpText="Print execution time breakdown to stdout",ShortName="et")]
304
-
publicboolExecutionTimes;
303
+
[Argument(ArgumentType.AtMostOnce,HelpText="Print execution time breakdown to stdout",ShortName="et,ExecutionTimes")]
304
+
publicboolExecutionTime;
305
305
306
306
// REVIEW: Different from original FastRank arguments (shortname l vs. nl). Different default from TLC FR Wrapper (20 vs. 20).
307
307
/// <summary>
@@ -320,7 +320,7 @@ public abstract class TreeOptions : LearnerInputBaseWithGroupId
320
320
[Argument(ArgumentType.LastOccurenceWins,HelpText="The minimal number of documents allowed in a leaf of a regression tree, out of the subsampled data",ShortName="mil,MinDocumentsInLeafs",SortOrder=3)]
321
321
[TGUI(Description="Minimum number of training instances required to form a leaf",SuggestedSweeps="1,10,50")]
0 commit comments