@@ -203,21 +203,24 @@ public void BinaryClassificationTrainersOnnxConversionTest()
203203 string dataPath = GetDataPath ( "breast-cancer.txt" ) ;
204204 // Now read the file (remember though, readers are lazy, so the actual reading will happen when the data is accessed).
205205 var dataView = mlContext . Data . LoadFromTextFile < BreastCancerBinaryClassification > ( dataPath , separatorChar : '\t ' , hasHeader : true ) ;
206- IEstimator < ITransformer > [ ] estimators = {
207- mlContext . BinaryClassification . Trainers . SymbolicSgdLogisticRegression ( ) ,
208- mlContext . BinaryClassification . Trainers . SgdCalibrated ( ) ,
206+ List < IEstimator < ITransformer > > estimators = new List < IEstimator < ITransformer > > ( )
207+ {
209208 mlContext . BinaryClassification . Trainers . AveragedPerceptron ( ) ,
210209 mlContext . BinaryClassification . Trainers . FastForest ( ) ,
211- mlContext . BinaryClassification . Trainers . LinearSvm ( ) ,
212- mlContext . BinaryClassification . Trainers . SdcaNonCalibrated ( ) ,
213- mlContext . BinaryClassification . Trainers . SgdNonCalibrated ( ) ,
214210 mlContext . BinaryClassification . Trainers . FastTree ( ) ,
215211 mlContext . BinaryClassification . Trainers . LbfgsLogisticRegression ( ) ,
216- mlContext . BinaryClassification . Trainers . LightGbm ( ) ,
212+ mlContext . BinaryClassification . Trainers . LinearSvm ( ) ,
217213 mlContext . BinaryClassification . Trainers . SdcaLogisticRegression ( ) ,
214+ mlContext . BinaryClassification . Trainers . SdcaNonCalibrated ( ) ,
218215 mlContext . BinaryClassification . Trainers . SgdCalibrated ( ) ,
216+ mlContext . BinaryClassification . Trainers . SgdNonCalibrated ( ) ,
219217 mlContext . BinaryClassification . Trainers . SymbolicSgdLogisticRegression ( ) ,
220218 } ;
219+ if ( Environment . Is64BitProcess )
220+ {
221+ estimators . Add ( mlContext . BinaryClassification . Trainers . LightGbm ( ) ) ;
222+ }
223+
221224 var initialPipeline = mlContext . Transforms . ReplaceMissingValues ( "Features" ) .
222225 Append ( mlContext . Transforms . NormalizeMinMax ( "Features" ) ) ;
223226 foreach ( var estimator in estimators )
0 commit comments