@@ -391,7 +391,7 @@ public void TensorFlowTransformInceptionTest()
391391 ) ;
392392
393393 var data = reader . Load ( new MultiFileSource ( dataFile ) ) ;
394- var images = mlContext . Transforms . LoadImages ( imageFolder , ( "ImageReal" , "ImagePath" ) ) . Fit ( data ) . Transform ( data ) ;
394+ var images = mlContext . Transforms . LoadImages ( "ImageReal" , "ImagePath" , imageFolder ) . Fit ( data ) . Transform ( data ) ;
395395 var cropped = mlContext . Transforms . ResizeImages ( "ImageCropped" , 224 , 224 , "ImageReal" ) . Fit ( images ) . Transform ( images ) ;
396396 var pixels = mlContext . Transforms . ExtractPixels ( inputName , "ImageCropped" , interleavePixelColors : true ) . Fit ( cropped ) . Transform ( cropped ) ;
397397 var tf = mlContext . Model . LoadTensorFlowModel ( modelLocation ) . ScoreTensorFlowModel ( outputName , inputName , true ) . Fit ( pixels ) . Transform ( pixels ) ;
@@ -507,7 +507,7 @@ public void TensorFlowTransformMNISTConvTest()
507507 var trainData = reader . Load ( GetDataPath ( TestDatasets . mnistTiny28 . trainFilename ) ) ;
508508 var testData = reader . Load ( GetDataPath ( TestDatasets . mnistOneClass . testFilename ) ) ;
509509
510- var pipe = mlContext . Transforms . CopyColumns ( ( "reshape_input" , "Placeholder" ) )
510+ var pipe = mlContext . Transforms . CopyColumns ( "reshape_input" , "Placeholder" )
511511 . Append ( mlContext . Model . LoadTensorFlowModel ( "mnist_model/frozen_saved_model.pb" ) . ScoreTensorFlowModel ( new [ ] { "Softmax" , "dense/Relu" } , new [ ] { "Placeholder" , "reshape_input" } ) )
512512 . Append ( mlContext . Transforms . Concatenate ( "Features" , "Softmax" , "dense/Relu" ) )
513513 . Append ( mlContext . MulticlassClassification . Trainers . LightGbm ( "Label" , "Features" ) ) ;
@@ -662,7 +662,7 @@ private void ExecuteTFTransformMNISTConvTrainingTest(bool shuffle, int? shuffleS
662662 preprocessedTestData = testData ;
663663 }
664664
665- var pipe = mlContext . Transforms . CopyColumns ( ( "Features" , "Placeholder" ) )
665+ var pipe = mlContext . Transforms . CopyColumns ( "Features" , "Placeholder" )
666666 . Append ( mlContext . Model . LoadTensorFlowModel ( modelLocation ) . RetrainTensorFlowModel (
667667 inputColumnNames : new [ ] { "Features" } ,
668668 outputColumnNames : new [ ] { "Prediction" } ,
@@ -729,7 +729,7 @@ public void TensorFlowTransformMNISTConvSavedModelTest()
729729 var trainData = reader . Load ( GetDataPath ( TestDatasets . mnistTiny28 . trainFilename ) ) ;
730730 var testData = reader . Load ( GetDataPath ( TestDatasets . mnistOneClass . testFilename ) ) ;
731731
732- var pipe = mlContext . Transforms . CopyColumns ( ( "reshape_input" , "Placeholder" ) )
732+ var pipe = mlContext . Transforms . CopyColumns ( "reshape_input" , "Placeholder" )
733733 . Append ( mlContext . Model . LoadTensorFlowModel ( "mnist_model" ) . ScoreTensorFlowModel ( new [ ] { "Softmax" , "dense/Relu" } , new [ ] { "Placeholder" , "reshape_input" } ) )
734734 . Append ( mlContext . Transforms . Concatenate ( "Features" , new [ ] { "Softmax" , "dense/Relu" } ) )
735735 . Append ( mlContext . MulticlassClassification . Trainers . LightGbm ( "Label" , "Features" ) ) ;
@@ -898,7 +898,7 @@ public void TensorFlowTransformCifarSavedModel()
898898 new TextLoader . Column ( "Name" , DataKind . String , 1 ) ,
899899 }
900900 ) ;
901- var images = mlContext . Transforms . LoadImages ( imageFolder , ( "ImageReal" , "ImagePath" ) ) . Fit ( data ) . Transform ( data ) ;
901+ var images = mlContext . Transforms . LoadImages ( "ImageReal" , imageFolder , "ImagePath" ) . Fit ( data ) . Transform ( data ) ;
902902 var cropped = mlContext . Transforms . ResizeImages ( "ImageCropped" , imageWidth , imageHeight , "ImageReal" ) . Fit ( images ) . Transform ( images ) ;
903903 var pixels = mlContext . Transforms . ExtractPixels ( "Input" , "ImageCropped" , interleavePixelColors : true ) . Fit ( cropped ) . Transform ( cropped ) ;
904904 IDataView trans = tensorFlowModel . ScoreTensorFlowModel ( "Output" , "Input" ) . Fit ( pixels ) . Transform ( pixels ) ;
@@ -1000,15 +1000,15 @@ public void TensorFlowSentimentClassificationTest()
10001000 // The second pipeline 'tfEnginePipe' takes the resized integer vector and passes it to TensoFlow and gets the classification scores.
10011001 var estimator = mlContext . Transforms . Text . TokenizeIntoWords ( "TokenizedWords" , "Sentiment_Text" )
10021002 . Append ( mlContext . Transforms . Conversion . MapValue ( lookupMap , lookupMap . Schema [ "Words" ] , lookupMap . Schema [ "Ids" ] ,
1003- new ColumnOptions [ ] { ( "Features" , "TokenizedWords" ) } ) ) ;
1003+ new [ ] { new InputOutputColumnPair ( "Features" , "TokenizedWords" ) } ) ) ;
10041004 var model = estimator . Fit ( dataView ) ;
10051005 var dataPipe = mlContext . Model . CreatePredictionEngine < TensorFlowSentiment , TensorFlowSentiment > ( model ) ;
10061006
10071007 // For explanation on how was the `sentiment_model` created
10081008 // c.f. https://github.com/dotnet/machinelearning-testdata/blob/master/Microsoft.ML.TensorFlow.TestModels/sentiment_model/README.md
10091009 string modelLocation = @"sentiment_model" ;
10101010 var pipelineModel = mlContext . Model . LoadTensorFlowModel ( modelLocation ) . ScoreTensorFlowModel ( new [ ] { "Prediction/Softmax" } , new [ ] { "Features" } )
1011- . Append ( mlContext . Transforms . CopyColumns ( ( "Prediction" , "Prediction/Softmax" ) ) )
1011+ . Append ( mlContext . Transforms . CopyColumns ( "Prediction" , "Prediction/Softmax" ) )
10121012 . Fit ( dataView ) ;
10131013 var tfEnginePipe = mlContext . Model . CreatePredictionEngine < TensorFlowSentiment , TensorFlowSentiment > ( pipelineModel ) ;
10141014
@@ -1052,7 +1052,7 @@ public void TensorFlowStringTest()
10521052 var dataview = mlContext . Data . CreateTextLoader < TextInput > ( ) . Load ( new MultiFileSource ( null ) ) ;
10531053
10541054 var pipeline = tensorFlowModel . ScoreTensorFlowModel ( new [ ] { "Original_A" , "Joined_Splited_Text" } , new [ ] { "A" , "B" } )
1055- . Append ( mlContext . Transforms . CopyColumns ( ( "AOut" , "Original_A" ) , ( "BOut" , "Joined_Splited_Text" ) ) ) ;
1055+ . Append ( mlContext . Transforms . CopyColumns ( new [ ] { new InputOutputColumnPair ( "AOut" , "Original_A" ) , new InputOutputColumnPair ( "BOut" , "Joined_Splited_Text" ) } ) ) ;
10561056 var transformer = mlContext . Model . CreatePredictionEngine < TextInput , TextOutput > ( pipeline . Fit ( dataview ) ) ;
10571057
10581058 var input = new TextInput
0 commit comments