Skip to content

Commit 1b26283

Browse files
Satya Tangiralaaxboe
authored andcommitted
block: Keyslot Manager for Inline Encryption
Inline Encryption hardware allows software to specify an encryption context (an encryption key, crypto algorithm, data unit num, data unit size) along with a data transfer request to a storage device, and the inline encryption hardware will use that context to en/decrypt the data. The inline encryption hardware is part of the storage device, and it conceptually sits on the data path between system memory and the storage device. Inline Encryption hardware implementations often function around the concept of "keyslots". These implementations often have a limited number of "keyslots", each of which can hold a key (we say that a key can be "programmed" into a keyslot). Requests made to the storage device may have a keyslot and a data unit number associated with them, and the inline encryption hardware will en/decrypt the data in the requests using the key programmed into that associated keyslot and the data unit number specified with the request. As keyslots are limited, and programming keys may be expensive in many implementations, and multiple requests may use exactly the same encryption contexts, we introduce a Keyslot Manager to efficiently manage keyslots. We also introduce a blk_crypto_key, which will represent the key that's programmed into keyslots managed by keyslot managers. The keyslot manager also functions as the interface that upper layers will use to program keys into inline encryption hardware. For more information on the Keyslot Manager, refer to documentation found in block/keyslot-manager.c and linux/keyslot-manager.h. Co-developed-by: Eric Biggers <[email protected]> Signed-off-by: Eric Biggers <[email protected]> Signed-off-by: Satya Tangirala <[email protected]> Reviewed-by: Eric Biggers <[email protected]> Reviewed-by: Christoph Hellwig <[email protected]> Signed-off-by: Jens Axboe <[email protected]>
1 parent 54b259f commit 1b26283

File tree

6 files changed

+550
-0
lines changed

6 files changed

+550
-0
lines changed

block/Kconfig

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -186,6 +186,13 @@ config BLK_SED_OPAL
186186
Enabling this option enables users to setup/unlock/lock
187187
Locking ranges for SED devices using the Opal protocol.
188188

189+
config BLK_INLINE_ENCRYPTION
190+
bool "Enable inline encryption support in block layer"
191+
help
192+
Build the blk-crypto subsystem. Enabling this lets the
193+
block layer handle encryption, so users can take
194+
advantage of inline encryption hardware if present.
195+
189196
menu "Partition Types"
190197

191198
source "block/partitions/Kconfig"

block/Makefile

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -36,3 +36,4 @@ obj-$(CONFIG_BLK_DEBUG_FS) += blk-mq-debugfs.o
3636
obj-$(CONFIG_BLK_DEBUG_FS_ZONED)+= blk-mq-debugfs-zoned.o
3737
obj-$(CONFIG_BLK_SED_OPAL) += sed-opal.o
3838
obj-$(CONFIG_BLK_PM) += blk-pm.o
39+
obj-$(CONFIG_BLK_INLINE_ENCRYPTION) += keyslot-manager.o

block/keyslot-manager.c

Lines changed: 378 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,378 @@
1+
// SPDX-License-Identifier: GPL-2.0
2+
/*
3+
* Copyright 2019 Google LLC
4+
*/
5+
6+
/**
7+
* DOC: The Keyslot Manager
8+
*
9+
* Many devices with inline encryption support have a limited number of "slots"
10+
* into which encryption contexts may be programmed, and requests can be tagged
11+
* with a slot number to specify the key to use for en/decryption.
12+
*
13+
* As the number of slots is limited, and programming keys is expensive on
14+
* many inline encryption hardware, we don't want to program the same key into
15+
* multiple slots - if multiple requests are using the same key, we want to
16+
* program just one slot with that key and use that slot for all requests.
17+
*
18+
* The keyslot manager manages these keyslots appropriately, and also acts as
19+
* an abstraction between the inline encryption hardware and the upper layers.
20+
*
21+
* Lower layer devices will set up a keyslot manager in their request queue
22+
* and tell it how to perform device specific operations like programming/
23+
* evicting keys from keyslots.
24+
*
25+
* Upper layers will call blk_ksm_get_slot_for_key() to program a
26+
* key into some slot in the inline encryption hardware.
27+
*/
28+
#include <linux/keyslot-manager.h>
29+
#include <linux/atomic.h>
30+
#include <linux/mutex.h>
31+
#include <linux/pm_runtime.h>
32+
#include <linux/wait.h>
33+
#include <linux/blkdev.h>
34+
35+
struct blk_ksm_keyslot {
36+
atomic_t slot_refs;
37+
struct list_head idle_slot_node;
38+
struct hlist_node hash_node;
39+
const struct blk_crypto_key *key;
40+
struct blk_keyslot_manager *ksm;
41+
};
42+
43+
static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm)
44+
{
45+
/*
46+
* Calling into the driver requires ksm->lock held and the device
47+
* resumed. But we must resume the device first, since that can acquire
48+
* and release ksm->lock via blk_ksm_reprogram_all_keys().
49+
*/
50+
if (ksm->dev)
51+
pm_runtime_get_sync(ksm->dev);
52+
down_write(&ksm->lock);
53+
}
54+
55+
static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm)
56+
{
57+
up_write(&ksm->lock);
58+
if (ksm->dev)
59+
pm_runtime_put_sync(ksm->dev);
60+
}
61+
62+
/**
63+
* blk_ksm_init() - Initialize a keyslot manager
64+
* @ksm: The keyslot_manager to initialize.
65+
* @num_slots: The number of key slots to manage.
66+
*
67+
* Allocate memory for keyslots and initialize a keyslot manager. Called by
68+
* e.g. storage drivers to set up a keyslot manager in their request_queue.
69+
*
70+
* Return: 0 on success, or else a negative error code.
71+
*/
72+
int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots)
73+
{
74+
unsigned int slot;
75+
unsigned int i;
76+
unsigned int slot_hashtable_size;
77+
78+
memset(ksm, 0, sizeof(*ksm));
79+
80+
if (num_slots == 0)
81+
return -EINVAL;
82+
83+
ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL);
84+
if (!ksm->slots)
85+
return -ENOMEM;
86+
87+
ksm->num_slots = num_slots;
88+
89+
init_rwsem(&ksm->lock);
90+
91+
init_waitqueue_head(&ksm->idle_slots_wait_queue);
92+
INIT_LIST_HEAD(&ksm->idle_slots);
93+
94+
for (slot = 0; slot < num_slots; slot++) {
95+
ksm->slots[slot].ksm = ksm;
96+
list_add_tail(&ksm->slots[slot].idle_slot_node,
97+
&ksm->idle_slots);
98+
}
99+
100+
spin_lock_init(&ksm->idle_slots_lock);
101+
102+
slot_hashtable_size = roundup_pow_of_two(num_slots);
103+
ksm->log_slot_ht_size = ilog2(slot_hashtable_size);
104+
ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size,
105+
sizeof(ksm->slot_hashtable[0]),
106+
GFP_KERNEL);
107+
if (!ksm->slot_hashtable)
108+
goto err_destroy_ksm;
109+
for (i = 0; i < slot_hashtable_size; i++)
110+
INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
111+
112+
return 0;
113+
114+
err_destroy_ksm:
115+
blk_ksm_destroy(ksm);
116+
return -ENOMEM;
117+
}
118+
EXPORT_SYMBOL_GPL(blk_ksm_init);
119+
120+
static inline struct hlist_head *
121+
blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm,
122+
const struct blk_crypto_key *key)
123+
{
124+
return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)];
125+
}
126+
127+
static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot)
128+
{
129+
struct blk_keyslot_manager *ksm = slot->ksm;
130+
unsigned long flags;
131+
132+
spin_lock_irqsave(&ksm->idle_slots_lock, flags);
133+
list_del(&slot->idle_slot_node);
134+
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
135+
}
136+
137+
static struct blk_ksm_keyslot *blk_ksm_find_keyslot(
138+
struct blk_keyslot_manager *ksm,
139+
const struct blk_crypto_key *key)
140+
{
141+
const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key);
142+
struct blk_ksm_keyslot *slotp;
143+
144+
hlist_for_each_entry(slotp, head, hash_node) {
145+
if (slotp->key == key)
146+
return slotp;
147+
}
148+
return NULL;
149+
}
150+
151+
static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot(
152+
struct blk_keyslot_manager *ksm,
153+
const struct blk_crypto_key *key)
154+
{
155+
struct blk_ksm_keyslot *slot;
156+
157+
slot = blk_ksm_find_keyslot(ksm, key);
158+
if (!slot)
159+
return NULL;
160+
if (atomic_inc_return(&slot->slot_refs) == 1) {
161+
/* Took first reference to this slot; remove it from LRU list */
162+
blk_ksm_remove_slot_from_lru_list(slot);
163+
}
164+
return slot;
165+
}
166+
167+
unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot)
168+
{
169+
return slot - slot->ksm->slots;
170+
}
171+
EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx);
172+
173+
/**
174+
* blk_ksm_get_slot_for_key() - Program a key into a keyslot.
175+
* @ksm: The keyslot manager to program the key into.
176+
* @key: Pointer to the key object to program, including the raw key, crypto
177+
* mode, and data unit size.
178+
* @slot_ptr: A pointer to return the pointer of the allocated keyslot.
179+
*
180+
* Get a keyslot that's been programmed with the specified key. If one already
181+
* exists, return it with incremented refcount. Otherwise, wait for a keyslot
182+
* to become idle and program it.
183+
*
184+
* Context: Process context. Takes and releases ksm->lock.
185+
* Return: BLK_STS_OK on success (and keyslot is set to the pointer of the
186+
* allocated keyslot), or some other blk_status_t otherwise (and
187+
* keyslot is set to NULL).
188+
*/
189+
blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
190+
const struct blk_crypto_key *key,
191+
struct blk_ksm_keyslot **slot_ptr)
192+
{
193+
struct blk_ksm_keyslot *slot;
194+
int slot_idx;
195+
int err;
196+
197+
*slot_ptr = NULL;
198+
down_read(&ksm->lock);
199+
slot = blk_ksm_find_and_grab_keyslot(ksm, key);
200+
up_read(&ksm->lock);
201+
if (slot)
202+
goto success;
203+
204+
for (;;) {
205+
blk_ksm_hw_enter(ksm);
206+
slot = blk_ksm_find_and_grab_keyslot(ksm, key);
207+
if (slot) {
208+
blk_ksm_hw_exit(ksm);
209+
goto success;
210+
}
211+
212+
/*
213+
* If we're here, that means there wasn't a slot that was
214+
* already programmed with the key. So try to program it.
215+
*/
216+
if (!list_empty(&ksm->idle_slots))
217+
break;
218+
219+
blk_ksm_hw_exit(ksm);
220+
wait_event(ksm->idle_slots_wait_queue,
221+
!list_empty(&ksm->idle_slots));
222+
}
223+
224+
slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot,
225+
idle_slot_node);
226+
slot_idx = blk_ksm_get_slot_idx(slot);
227+
228+
err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx);
229+
if (err) {
230+
wake_up(&ksm->idle_slots_wait_queue);
231+
blk_ksm_hw_exit(ksm);
232+
return errno_to_blk_status(err);
233+
}
234+
235+
/* Move this slot to the hash list for the new key. */
236+
if (slot->key)
237+
hlist_del(&slot->hash_node);
238+
slot->key = key;
239+
hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key));
240+
241+
atomic_set(&slot->slot_refs, 1);
242+
243+
blk_ksm_remove_slot_from_lru_list(slot);
244+
245+
blk_ksm_hw_exit(ksm);
246+
success:
247+
*slot_ptr = slot;
248+
return BLK_STS_OK;
249+
}
250+
251+
/**
252+
* blk_ksm_put_slot() - Release a reference to a slot
253+
* @slot: The keyslot to release the reference of.
254+
*
255+
* Context: Any context.
256+
*/
257+
void blk_ksm_put_slot(struct blk_ksm_keyslot *slot)
258+
{
259+
struct blk_keyslot_manager *ksm;
260+
unsigned long flags;
261+
262+
if (!slot)
263+
return;
264+
265+
ksm = slot->ksm;
266+
267+
if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
268+
&ksm->idle_slots_lock, flags)) {
269+
list_add_tail(&slot->idle_slot_node, &ksm->idle_slots);
270+
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
271+
wake_up(&ksm->idle_slots_wait_queue);
272+
}
273+
}
274+
275+
/**
276+
* blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is
277+
* supported by a ksm.
278+
* @ksm: The keyslot manager to check
279+
* @cfg: The crypto configuration to check for.
280+
*
281+
* Checks for crypto_mode/data unit size/dun bytes support.
282+
*
283+
* Return: Whether or not this ksm supports the specified crypto config.
284+
*/
285+
bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm,
286+
const struct blk_crypto_config *cfg)
287+
{
288+
if (!ksm)
289+
return false;
290+
if (!(ksm->crypto_modes_supported[cfg->crypto_mode] &
291+
cfg->data_unit_size))
292+
return false;
293+
if (ksm->max_dun_bytes_supported < cfg->dun_bytes)
294+
return false;
295+
return true;
296+
}
297+
298+
/**
299+
* blk_ksm_evict_key() - Evict a key from the lower layer device.
300+
* @ksm: The keyslot manager to evict from
301+
* @key: The key to evict
302+
*
303+
* Find the keyslot that the specified key was programmed into, and evict that
304+
* slot from the lower layer device. The slot must not be in use by any
305+
* in-flight IO when this function is called.
306+
*
307+
* Context: Process context. Takes and releases ksm->lock.
308+
* Return: 0 on success or if there's no keyslot with the specified key, -EBUSY
309+
* if the keyslot is still in use, or another -errno value on other
310+
* error.
311+
*/
312+
int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
313+
const struct blk_crypto_key *key)
314+
{
315+
struct blk_ksm_keyslot *slot;
316+
int err = 0;
317+
318+
blk_ksm_hw_enter(ksm);
319+
slot = blk_ksm_find_keyslot(ksm, key);
320+
if (!slot)
321+
goto out_unlock;
322+
323+
if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) {
324+
err = -EBUSY;
325+
goto out_unlock;
326+
}
327+
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key,
328+
blk_ksm_get_slot_idx(slot));
329+
if (err)
330+
goto out_unlock;
331+
332+
hlist_del(&slot->hash_node);
333+
slot->key = NULL;
334+
err = 0;
335+
out_unlock:
336+
blk_ksm_hw_exit(ksm);
337+
return err;
338+
}
339+
340+
/**
341+
* blk_ksm_reprogram_all_keys() - Re-program all keyslots.
342+
* @ksm: The keyslot manager
343+
*
344+
* Re-program all keyslots that are supposed to have a key programmed. This is
345+
* intended only for use by drivers for hardware that loses its keys on reset.
346+
*
347+
* Context: Process context. Takes and releases ksm->lock.
348+
*/
349+
void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm)
350+
{
351+
unsigned int slot;
352+
353+
/* This is for device initialization, so don't resume the device */
354+
down_write(&ksm->lock);
355+
for (slot = 0; slot < ksm->num_slots; slot++) {
356+
const struct blk_crypto_key *key = ksm->slots[slot].key;
357+
int err;
358+
359+
if (!key)
360+
continue;
361+
362+
err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
363+
WARN_ON(err);
364+
}
365+
up_write(&ksm->lock);
366+
}
367+
EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys);
368+
369+
void blk_ksm_destroy(struct blk_keyslot_manager *ksm)
370+
{
371+
if (!ksm)
372+
return;
373+
kvfree(ksm->slot_hashtable);
374+
memzero_explicit(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots);
375+
kvfree(ksm->slots);
376+
memzero_explicit(ksm, sizeof(*ksm));
377+
}
378+
EXPORT_SYMBOL_GPL(blk_ksm_destroy);

0 commit comments

Comments
 (0)