Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 30, 2025

📄 2,601% (26.01x) speedup for ServiceNowResponse.to_dict in backend/python/app/sources/client/servicenow/servicenow.py

⏱️ Runtime : 632 microseconds 23.4 microseconds (best of 269 runs)

📝 Explanation and details

The optimization replaces Pydantic's model_dump() method with a direct dictionary conversion using dict(self.__dict__).

Key Change: Instead of calling Pydantic's heavyweight serialization method, the code directly accesses the instance's internal __dict__ attribute and wraps it in a dict() constructor.

Why This is Faster: Pydantic's model_dump() performs extensive validation, type checking, field processing, and handles complex serialization rules. In contrast, dict(self.__dict__) simply creates a shallow copy of the instance's attribute dictionary without any validation overhead. The line profiler shows the per-hit time dropped from 18,844 ns to 1,177 ns - a 16x improvement per call.

Performance Benefits: This optimization delivers a 2601% speedup (from 632μs to 23.4μs) because it eliminates Pydantic's serialization pipeline entirely. The __dict__ access is a simple attribute lookup followed by a dictionary copy operation.

Test Case Suitability: The optimization works well across all test scenarios - from simple cases with just a success field to complex nested data structures with 1000+ elements. It's particularly effective for the large-scale test cases that would normally trigger more expensive Pydantic processing, while maintaining identical output for all data types including None values, nested dictionaries, lists, and unicode characters.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 584 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 2 Passed
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
from typing import Any, Dict, Optional

# imports
import pytest  # used for our unit tests
from app.sources.client.servicenow.servicenow import ServiceNowResponse
# function to test
from pydantic import BaseModel

# unit tests

# ----------------------
# Basic Test Cases
# ----------------------

def test_to_dict_success_true_with_data():
    # Test normal case: success True, data present, no error/message
    resp = ServiceNowResponse(success=True, data={"id": 1, "value": "foo"})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_success_false_with_error():
    # Test normal case: success False, error present, no data/message
    resp = ServiceNowResponse(success=False, error="Some error occurred")
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_with_message_only():
    # Test normal case: only message is set
    resp = ServiceNowResponse(success=True, message="Operation completed")
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_all_fields():
    # Test normal case: all fields set
    resp = ServiceNowResponse(
        success=True,
        data={"foo": 123},
        error="no error",
        message="done"
    )
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_minimal_success():
    # Test minimal input: only required field
    resp = ServiceNowResponse(success=True)
    codeflash_output = resp.to_dict(); d = codeflash_output

# ----------------------
# Edge Test Cases
# ----------------------

def test_to_dict_empty_data_dict():
    # Test edge: data is an empty dict
    resp = ServiceNowResponse(success=True, data={})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_none_value():
    # Test edge: data dict contains None value
    resp = ServiceNowResponse(success=True, data={"a": None, "b": 2})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_nested_dict():
    # Test edge: data dict contains nested dict
    resp = ServiceNowResponse(success=True, data={"outer": {"inner": "val"}})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_error_and_message_empty_strings():
    # Test edge: error and message are empty strings
    resp = ServiceNowResponse(success=False, error="", message="")
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_various_types():
    # Test edge: data dict contains various types
    resp = ServiceNowResponse(success=True, data={
        "int": 1,
        "float": 2.5,
        "bool": False,
        "list": [1, 2, 3],
        "dict": {"a": "b"},
        "none": None
    })
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_is_none_explicit():
    # Test edge: data is explicitly set to None
    resp = ServiceNowResponse(success=True, data=None)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_with_unicode_and_special_chars():
    # Test edge: fields contain unicode and special characters
    resp = ServiceNowResponse(
        success=True,
        data={"emoji": "😀", "special": "©®™✓"},
        message="操作成功",
        error="خطأ"
    )
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_with_long_strings():
    # Test edge: very long string fields
    long_str = "x" * 1000
    resp = ServiceNowResponse(success=False, error=long_str, message=long_str)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_empty_list_and_dict():
    # Test edge: data contains empty list and dict
    resp = ServiceNowResponse(success=True, data={"empty_list": [], "empty_dict": {}})
    codeflash_output = resp.to_dict(); d = codeflash_output

# ----------------------
# Large Scale Test Cases
# ----------------------

def test_to_dict_large_data_dict():
    # Test large data dict (up to 1000 items)
    data = {f"key{i}": i for i in range(1000)}
    resp = ServiceNowResponse(success=True, data=data)
    codeflash_output = resp.to_dict(); d = codeflash_output
    for i in range(0, 1000, 100):  # spot check a few keys
        pass

def test_to_dict_large_nested_data():
    # Test large nested data structure
    nested = {"a": [{"b": i, "c": [j for j in range(10)]} for i in range(100)]}
    resp = ServiceNowResponse(success=True, data=nested)
    codeflash_output = resp.to_dict(); d = codeflash_output
    for item in d["data"]["a"]:
        pass

def test_to_dict_many_instances():
    # Test creating and serializing many instances
    responses = [
        ServiceNowResponse(success=bool(i % 2), data={"id": i})
        for i in range(500)
    ]
    dicts = [r.to_dict() for r in responses]
    for i, d in enumerate(dicts):
        pass

def test_to_dict_large_error_and_message():
    # Test large error and message strings
    large_error = "E" * 900
    large_message = "M" * 950
    resp = ServiceNowResponse(success=False, error=large_error, message=large_message)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_large_data_with_varied_types():
    # Test large data dict with varied types
    data = {
        f"key{i}": [j for j in range(10)] if i % 2 == 0 else {"inner": i}
        for i in range(500)
    }
    resp = ServiceNowResponse(success=True, data=data)
    codeflash_output = resp.to_dict(); d = codeflash_output
    for i in range(0, 500, 50):
        if i % 2 == 0:
            pass
        else:
            pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from typing import Any, Dict, Optional

# imports
import pytest
from app.sources.client.servicenow.servicenow import ServiceNowResponse
# function to test
from pydantic import BaseModel

# unit tests

# 1. Basic Test Cases

def test_to_dict_success_only():
    """Test with only the required 'success' field."""
    resp = ServiceNowResponse(success=True)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_success_false():
    """Test with 'success' set to False."""
    resp = ServiceNowResponse(success=False)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_with_data():
    """Test with 'data' field provided."""
    resp = ServiceNowResponse(success=True, data={"foo": "bar"})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_with_error_and_message():
    """Test with 'error' and 'message' fields provided."""
    resp = ServiceNowResponse(success=False, error="ERR", message="Something went wrong")
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_all_fields():
    """Test with all fields provided."""
    resp = ServiceNowResponse(
        success=True,
        data={"id": 123, "status": "ok"},
        error="",
        message="All good"
    )
    codeflash_output = resp.to_dict(); d = codeflash_output

# 2. Edge Test Cases

def test_to_dict_data_empty_dict():
    """Test with 'data' as an empty dictionary."""
    resp = ServiceNowResponse(success=True, data={})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_error_empty_string():
    """Test with 'error' as an empty string."""
    resp = ServiceNowResponse(success=False, error="")
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_message_empty_string():
    """Test with 'message' as an empty string."""
    resp = ServiceNowResponse(success=True, message="")
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_none_values():
    """Test with 'data' containing None values."""
    resp = ServiceNowResponse(success=True, data={"a": None, "b": 2})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_nested_dict():
    """Test with 'data' containing nested dictionaries."""
    resp = ServiceNowResponse(success=True, data={"outer": {"inner": 1}})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_various_types():
    """Test with 'data' containing various types."""
    resp = ServiceNowResponse(success=True, data={"int": 1, "float": 2.5, "bool": False, "list": [1,2], "none": None})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_error_and_message_none():
    """Test with 'error' and 'message' explicitly set to None."""
    resp = ServiceNowResponse(success=True, error=None, message=None)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_special_characters():
    """Test with 'data' containing special characters."""
    resp = ServiceNowResponse(success=True, data={"weird": "!@#$%^&*()_+-=[]{};':\",.<>/?\\|`~"})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_unicode():
    """Test with 'data' containing unicode characters."""
    resp = ServiceNowResponse(success=True, data={"emoji": "😀", "nonlatin": "你好"})
    codeflash_output = resp.to_dict(); d = codeflash_output



def test_to_dict_data_with_list_value():
    """Test with 'data' containing a list value."""
    resp = ServiceNowResponse(success=True, data={"numbers": [1, 2, 3]})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_tuple_value():
    """Test with 'data' containing a tuple value."""
    resp = ServiceNowResponse(success=True, data={"coords": (1, 2)})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_set_value():
    """Test with 'data' containing a set value."""
    resp = ServiceNowResponse(success=True, data={"unique": {1, 2, 3}})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_data_with_none():
    """Test with 'data' explicitly set to None."""
    resp = ServiceNowResponse(success=True, data=None)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_all_fields_none():
    """Test with all optional fields set to None."""
    resp = ServiceNowResponse(success=True, data=None, error=None, message=None)
    codeflash_output = resp.to_dict(); d = codeflash_output

# 3. Large Scale Test Cases

def test_to_dict_large_data_dict():
    """Test with a large 'data' dictionary (up to 1000 elements)."""
    large_data = {f"key{i}": i for i in range(1000)}
    resp = ServiceNowResponse(success=True, data=large_data)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_large_nested_data():
    """Test with a large nested 'data' dictionary."""
    nested = {f"outer{i}": {"inner": i} for i in range(500)}
    resp = ServiceNowResponse(success=True, data=nested)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_large_list_in_data():
    """Test with a large list inside 'data'."""
    big_list = list(range(1000))
    resp = ServiceNowResponse(success=True, data={"numbers": big_list})
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_large_mixed_data():
    """Test with a large, complex 'data' structure."""
    complex_data = {
        "ints": list(range(500)),
        "dicts": [{f"k{j}": j for j in range(10)} for _ in range(10)],
        "nested": {f"x{i}": {"y": [i, i+1, i+2]} for i in range(50)},
        "empty": {},
        "none": None
    }
    resp = ServiceNowResponse(success=True, data=complex_data)
    codeflash_output = resp.to_dict(); d = codeflash_output

def test_to_dict_performance_large():
    """Test that to_dict does not raise or hang with large input."""
    import time
    big_data = {str(i): i for i in range(999)}
    resp = ServiceNowResponse(success=True, data=big_data)
    start = time.time()
    codeflash_output = resp.to_dict(); d = codeflash_output
    duration = time.time() - start
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from app.sources.client.servicenow.servicenow import ServiceNowResponse

def test_ServiceNowResponse_to_dict():
    ServiceNowResponse.to_dict(ServiceNowResponse(success=False, data={}, error='', message=''))
🔎 Concolic Coverage Tests and Runtime

To edit these changes git checkout codeflash/optimize-ServiceNowResponse.to_dict-mhe30s1t and push.

Codeflash Static Badge

The optimization replaces Pydantic's `model_dump()` method with a direct dictionary conversion using `dict(self.__dict__)`. 

**Key Change**: Instead of calling Pydantic's heavyweight serialization method, the code directly accesses the instance's internal `__dict__` attribute and wraps it in a `dict()` constructor.

**Why This is Faster**: Pydantic's `model_dump()` performs extensive validation, type checking, field processing, and handles complex serialization rules. In contrast, `dict(self.__dict__)` simply creates a shallow copy of the instance's attribute dictionary without any validation overhead. The line profiler shows the per-hit time dropped from 18,844 ns to 1,177 ns - a 16x improvement per call.

**Performance Benefits**: This optimization delivers a **2601% speedup** (from 632μs to 23.4μs) because it eliminates Pydantic's serialization pipeline entirely. The `__dict__` access is a simple attribute lookup followed by a dictionary copy operation.

**Test Case Suitability**: The optimization works well across all test scenarios - from simple cases with just a `success` field to complex nested data structures with 1000+ elements. It's particularly effective for the large-scale test cases that would normally trigger more expensive Pydantic processing, while maintaining identical output for all data types including None values, nested dictionaries, lists, and unicode characters.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 30, 2025 23:55
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash labels Oct 30, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant