@@ -18,22 +18,22 @@ test_that("check_enough_data works on pooled data", {
1818 # Check both columns have enough data
1919 expect_no_error(
2020 epi_recipe(toy_epi_df ) %> %
21- check_enough_data(x , y , min_data_points = 2 * n , drop_na = FALSE ) %> %
21+ check_enough_data(x , y , min_observations = 2 * n , drop_na = FALSE ) %> %
2222 prep(toy_epi_df ) %> %
2323 bake(new_data = NULL )
2424 )
2525 # Check both column don't have enough data
2626 expect_snapshot(
2727 error = TRUE ,
2828 epi_recipe(toy_epi_df ) %> %
29- check_enough_data(x , y , min_data_points = 2 * n + 1 , drop_na = FALSE ) %> %
29+ check_enough_data(x , y , min_observations = 2 * n + 1 , drop_na = FALSE ) %> %
3030 prep(toy_epi_df )
3131 )
3232 # Check drop_na works
3333 expect_snapshot(
3434 error = TRUE ,
3535 epi_recipe(toy_epi_df ) %> %
36- check_enough_data(x , y , min_data_points = 2 * n - 1 , drop_na = TRUE ) %> %
36+ check_enough_data(x , y , min_observations = 2 * n - 1 , drop_na = TRUE ) %> %
3737 prep(toy_epi_df )
3838 )
3939})
@@ -42,30 +42,30 @@ test_that("check_enough_data works on unpooled data", {
4242 # Check both columns have enough data
4343 expect_no_error(
4444 epi_recipe(toy_epi_df ) %> %
45- check_enough_data(x , y , min_data_points = n , epi_keys = " geo_value" , drop_na = FALSE ) %> %
45+ check_enough_data(x , y , min_observations = n , epi_keys = " geo_value" , drop_na = FALSE ) %> %
4646 prep(toy_epi_df ) %> %
4747 bake(new_data = NULL )
4848 )
4949 # Check one column don't have enough data
5050 expect_snapshot(
5151 error = TRUE ,
5252 epi_recipe(toy_epi_df ) %> %
53- check_enough_data(x , y , min_data_points = n + 1 , epi_keys = " geo_value" , drop_na = FALSE ) %> %
53+ check_enough_data(x , y , min_observations = n + 1 , epi_keys = " geo_value" , drop_na = FALSE ) %> %
5454 prep(toy_epi_df )
5555 )
5656 # Check drop_na works
5757 expect_snapshot(
5858 error = TRUE ,
5959 epi_recipe(toy_epi_df ) %> %
60- check_enough_data(x , y , min_data_points = 2 * n - 3 , epi_keys = " geo_value" , drop_na = TRUE ) %> %
60+ check_enough_data(x , y , min_observations = 2 * n - 3 , epi_keys = " geo_value" , drop_na = TRUE ) %> %
6161 prep(toy_epi_df )
6262 )
6363})
6464
6565test_that(" check_enough_data outputs the correct recipe values" , {
6666 expect_no_error(
6767 p <- epi_recipe(toy_epi_df ) %> %
68- check_enough_data(x , y , min_data_points = 2 * n - 2 ) %> %
68+ check_enough_data(x , y , min_observations = 2 * n - 2 ) %> %
6969 prep(toy_epi_df ) %> %
7070 bake(new_data = NULL )
7171 )
@@ -90,15 +90,15 @@ test_that("check_enough_data only checks train data when skip = FALSE", {
9090 epiprocess :: as_epi_df()
9191 expect_no_error(
9292 epi_recipe(toy_epi_df ) %> %
93- check_enough_data(x , y , min_data_points = n - 2 , epi_keys = " geo_value" ) %> %
93+ check_enough_data(x , y , min_observations = n - 2 , epi_keys = " geo_value" ) %> %
9494 prep(toy_epi_df ) %> %
9595 bake(new_data = toy_test_data )
9696 )
9797 # Making sure `skip = TRUE` is working correctly in `predict`
9898 expect_no_error(
9999 epi_recipe(toy_epi_df ) %> %
100100 add_role(y , new_role = " outcome" ) %> %
101- check_enough_data(x , min_data_points = n - 2 , epi_keys = " geo_value" ) %> %
101+ check_enough_data(x , min_observations = n - 2 , epi_keys = " geo_value" ) %> %
102102 epi_workflow(linear_reg()) %> %
103103 fit(toy_epi_df ) %> %
104104 predict(new_data = toy_test_data %> % filter(time_value > " 2020-01-08" ))
@@ -108,7 +108,7 @@ test_that("check_enough_data only checks train data when skip = FALSE", {
108108 expect_no_error(
109109 forecaster <- epi_recipe(toy_epi_df ) %> %
110110 add_role(y , new_role = " outcome" ) %> %
111- check_enough_data(x , min_data_points = 1 , epi_keys = " geo_value" , skip = FALSE ) %> %
111+ check_enough_data(x , min_observations = 1 , epi_keys = " geo_value" , skip = FALSE ) %> %
112112 epi_workflow(linear_reg()) %> %
113113 fit(toy_epi_df )
114114 )
@@ -125,15 +125,15 @@ test_that("check_enough_data works with all_predictors() downstream of construct
125125 expect_no_error(
126126 epi_recipe(toy_epi_df ) %> %
127127 step_epi_lag(x , lag = c(1 , 2 )) %> %
128- check_enough_data(all_predictors(), y , min_data_points = 2 * n - 5 ) %> %
128+ check_enough_data(all_predictors(), y , min_observations = 2 * n - 5 ) %> %
129129 prep(toy_epi_df ) %> %
130130 bake(new_data = NULL )
131131 )
132132 expect_snapshot(
133133 error = TRUE ,
134134 epi_recipe(toy_epi_df ) %> %
135135 step_epi_lag(x , lag = c(1 , 2 )) %> %
136- check_enough_data(all_predictors(), y , min_data_points = 2 * n - 4 ) %> %
136+ check_enough_data(all_predictors(), y , min_observations = 2 * n - 4 ) %> %
137137 prep(toy_epi_df )
138138 )
139139})
0 commit comments