diff --git a/tests/integ/test_auto_ml.py b/tests/integ/test_auto_ml.py index 3b65344798..26e90ecf74 100644 --- a/tests/integ/test_auto_ml.py +++ b/tests/integ/test_auto_ml.py @@ -13,7 +13,6 @@ from __future__ import absolute_import import os -import time import pytest import tests.integ @@ -34,7 +33,7 @@ TRAINING_DATA = os.path.join(DATA_DIR, "iris_training.csv") TEST_DATA = os.path.join(DATA_DIR, "iris_test.csv") PROBLEM_TYPE = "MultiClassClassification" -JOB_NAME = "auto-ml-{}".format(time.strftime("%y%m%d-%H%M%S")) +BASE_JOB_NAME = "auto-ml" # use a succeeded AutoML job to test describe and list candidates method, otherwise tests will run too long AUTO_ML_JOB_NAME = "python-sdk-integ-test-base-job" @@ -119,11 +118,11 @@ def test_auto_ml_fit_optional_args(sagemaker_session): ) inputs = TRAINING_DATA with timeout(minutes=AUTO_ML_DEFAULT_TIMEMOUT_MINUTES): - auto_ml.fit(inputs, job_name=JOB_NAME) + auto_ml.fit(inputs, job_name=unique_name_from_base(BASE_JOB_NAME)) - auto_ml_desc = auto_ml.describe_auto_ml_job(job_name=JOB_NAME) + auto_ml_desc = auto_ml.describe_auto_ml_job(job_name=auto_ml.latest_auto_ml_job.job_name) assert auto_ml_desc["AutoMLJobStatus"] == "Completed" - assert auto_ml_desc["AutoMLJobName"] == JOB_NAME + assert auto_ml_desc["AutoMLJobName"] == auto_ml.latest_auto_ml_job.job_name assert auto_ml_desc["AutoMLJobObjective"] == job_objective assert auto_ml_desc["ProblemType"] == problem_type assert auto_ml_desc["OutputDataConfig"]["S3OutputPath"] == output_path