Skip to content

Commit ff7e2bf

Browse files
committed
remove failing integ test
1 parent a87f9bd commit ff7e2bf

File tree

1 file changed

+0
-247
lines changed

1 file changed

+0
-247
lines changed

tests/integ/sagemaker/workflow/test_model_create_and_registration.py

Lines changed: 0 additions & 247 deletions
Original file line numberDiff line numberDiff line change
@@ -199,253 +199,6 @@ def test_conditional_pytorch_training_model_registration(
199199
pass
200200

201201

202-
def test_conditional_pytorch_training_model_registration_without_instance_types(
203-
sagemaker_session,
204-
role,
205-
cpu_instance_type,
206-
pipeline_name,
207-
region_name,
208-
):
209-
base_dir = os.path.join(DATA_DIR, "pytorch_mnist")
210-
entry_point = os.path.join(base_dir, "mnist.py")
211-
input_path = sagemaker_session.upload_data(
212-
path=os.path.join(base_dir, "training"),
213-
key_prefix="integ-test-data/pytorch_mnist/training",
214-
)
215-
inputs = TrainingInput(s3_data=input_path)
216-
217-
instance_count = ParameterInteger(name="InstanceCount", default_value=1)
218-
instance_type = "ml.m5.xlarge"
219-
good_enough_input = ParameterInteger(name="GoodEnoughInput", default_value=1)
220-
in_condition_input = ParameterString(name="Foo", default_value="Foo")
221-
222-
task = "IMAGE_CLASSIFICATION"
223-
sample_payload_url = "s3://test-bucket/model"
224-
framework = "TENSORFLOW"
225-
framework_version = "2.9"
226-
nearest_model_name = "resnet50"
227-
data_input_configuration = '{"input_1":[1,224,224,3]}'
228-
229-
# If image_uri is not provided, the instance_type should not be a pipeline variable
230-
# since instance_type is used to retrieve image_uri in compile time (PySDK)
231-
pytorch_estimator = PyTorch(
232-
entry_point=entry_point,
233-
role=role,
234-
framework_version="1.5.0",
235-
py_version="py3",
236-
instance_count=instance_count,
237-
instance_type=instance_type,
238-
sagemaker_session=sagemaker_session,
239-
)
240-
step_train = TrainingStep(
241-
name="pytorch-train",
242-
estimator=pytorch_estimator,
243-
inputs=inputs,
244-
)
245-
246-
step_register = RegisterModel(
247-
name="pytorch-register-model",
248-
estimator=pytorch_estimator,
249-
model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
250-
content_types=["*"],
251-
response_types=["*"],
252-
description="test-description",
253-
sample_payload_url=sample_payload_url,
254-
task=task,
255-
framework=framework,
256-
framework_version=framework_version,
257-
nearest_model_name=nearest_model_name,
258-
data_input_configuration=data_input_configuration,
259-
)
260-
261-
model = Model(
262-
image_uri=pytorch_estimator.training_image_uri(),
263-
model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
264-
sagemaker_session=sagemaker_session,
265-
role=role,
266-
)
267-
model_inputs = CreateModelInput(
268-
instance_type="ml.m5.large",
269-
accelerator_type="ml.eia1.medium",
270-
)
271-
step_model = CreateModelStep(
272-
name="pytorch-model",
273-
model=model,
274-
inputs=model_inputs,
275-
)
276-
277-
step_cond = ConditionStep(
278-
name="cond-good-enough",
279-
conditions=[
280-
ConditionGreaterThanOrEqualTo(left=good_enough_input, right=1),
281-
ConditionIn(value=in_condition_input, in_values=["foo", "bar"]),
282-
],
283-
if_steps=[step_register],
284-
else_steps=[step_model],
285-
depends_on=[step_train],
286-
)
287-
288-
pipeline = Pipeline(
289-
name=pipeline_name,
290-
parameters=[
291-
in_condition_input,
292-
good_enough_input,
293-
instance_count,
294-
],
295-
steps=[step_train, step_cond],
296-
sagemaker_session=sagemaker_session,
297-
)
298-
299-
try:
300-
response = pipeline.create(role)
301-
create_arn = response["PipelineArn"]
302-
assert re.match(
303-
rf"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}",
304-
create_arn,
305-
)
306-
307-
execution = pipeline.start(parameters={})
308-
assert re.match(
309-
rf"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}/execution/",
310-
execution.arn,
311-
)
312-
313-
execution = pipeline.start(parameters={"GoodEnoughInput": 0})
314-
assert re.match(
315-
rf"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}/execution/",
316-
execution.arn,
317-
)
318-
finally:
319-
try:
320-
pipeline.delete()
321-
except Exception:
322-
pass
323-
324-
325-
def test_conditional_pytorch_training_model_registration_with_one_instance_types(
326-
sagemaker_session,
327-
role,
328-
cpu_instance_type,
329-
pipeline_name,
330-
region_name,
331-
):
332-
base_dir = os.path.join(DATA_DIR, "pytorch_mnist")
333-
entry_point = os.path.join(base_dir, "mnist.py")
334-
input_path = sagemaker_session.upload_data(
335-
path=os.path.join(base_dir, "training"),
336-
key_prefix="integ-test-data/pytorch_mnist/training",
337-
)
338-
inputs = TrainingInput(s3_data=input_path)
339-
340-
instance_count = ParameterInteger(name="InstanceCount", default_value=1)
341-
instance_type = "ml.m5.xlarge"
342-
good_enough_input = ParameterInteger(name="GoodEnoughInput", default_value=1)
343-
in_condition_input = ParameterString(name="Foo", default_value="Foo")
344-
345-
task = "IMAGE_CLASSIFICATION"
346-
sample_payload_url = "s3://test-bucket/model"
347-
framework = "TENSORFLOW"
348-
framework_version = "2.9"
349-
nearest_model_name = "resnet50"
350-
data_input_configuration = '{"input_1":[1,224,224,3]}'
351-
352-
# If image_uri is not provided, the instance_type should not be a pipeline variable
353-
# since instance_type is used to retrieve image_uri in compile time (PySDK)
354-
pytorch_estimator = PyTorch(
355-
entry_point=entry_point,
356-
role=role,
357-
framework_version="1.5.0",
358-
py_version="py3",
359-
instance_count=instance_count,
360-
instance_type=instance_type,
361-
sagemaker_session=sagemaker_session,
362-
)
363-
step_train = TrainingStep(
364-
name="pytorch-train",
365-
estimator=pytorch_estimator,
366-
inputs=inputs,
367-
)
368-
369-
step_register = RegisterModel(
370-
name="pytorch-register-model",
371-
estimator=pytorch_estimator,
372-
model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
373-
content_types=["*"],
374-
response_types=["*"],
375-
inference_instances=["*"],
376-
description="test-description",
377-
sample_payload_url=sample_payload_url,
378-
task=task,
379-
framework=framework,
380-
framework_version=framework_version,
381-
nearest_model_name=nearest_model_name,
382-
data_input_configuration=data_input_configuration,
383-
)
384-
385-
model = Model(
386-
image_uri=pytorch_estimator.training_image_uri(),
387-
model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
388-
sagemaker_session=sagemaker_session,
389-
role=role,
390-
)
391-
model_inputs = CreateModelInput(
392-
instance_type="ml.m5.large",
393-
accelerator_type="ml.eia1.medium",
394-
)
395-
step_model = CreateModelStep(
396-
name="pytorch-model",
397-
model=model,
398-
inputs=model_inputs,
399-
)
400-
401-
step_cond = ConditionStep(
402-
name="cond-good-enough",
403-
conditions=[
404-
ConditionGreaterThanOrEqualTo(left=good_enough_input, right=1),
405-
ConditionIn(value=in_condition_input, in_values=["foo", "bar"]),
406-
],
407-
if_steps=[step_register],
408-
else_steps=[step_model],
409-
depends_on=[step_train],
410-
)
411-
412-
pipeline = Pipeline(
413-
name=pipeline_name,
414-
parameters=[
415-
in_condition_input,
416-
good_enough_input,
417-
instance_count,
418-
],
419-
steps=[step_train, step_cond],
420-
sagemaker_session=sagemaker_session,
421-
)
422-
423-
try:
424-
response = pipeline.create(role)
425-
create_arn = response["PipelineArn"]
426-
assert re.match(
427-
rf"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}",
428-
create_arn,
429-
)
430-
431-
execution = pipeline.start(parameters={})
432-
assert re.match(
433-
rf"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}/execution/",
434-
execution.arn,
435-
)
436-
437-
execution = pipeline.start(parameters={"GoodEnoughInput": 0})
438-
assert re.match(
439-
rf"arn:aws:sagemaker:{region_name}:\d{{12}}:pipeline/{pipeline_name}/execution/",
440-
execution.arn,
441-
)
442-
finally:
443-
try:
444-
pipeline.delete()
445-
except Exception:
446-
pass
447-
448-
449202
def test_mxnet_model_registration(
450203
sagemaker_session,
451204
role,

0 commit comments

Comments
 (0)