10
10
CLASSIFICATION_METRICS = ['acc' , 'auc' , 'balacc' , 'logloss' ]
11
11
REGRESSION_METRICS = ['mae' , 'r2' , 'rmse' ]
12
12
METRICS = CLASSIFICATION_METRICS + REGRESSION_METRICS
13
+
13
14
def _get_mean_results_across_folds (df ) -> pd .DataFrame :
14
15
""" Returns a dataframe with the task, id, metric and the mean values
15
16
across folds
@@ -73,7 +74,7 @@ def generate_framework_def(
73
74
# Using branch and https
74
75
version = branch
75
76
repo = f'https://github.com/{ username } /auto-sklearn.git'
76
-
77
+
77
78
# Create the framework file
78
79
lines = '\n ' .join ([
79
80
f"---" ,
@@ -129,6 +130,7 @@ def create_comparison(
129
130
Comparisons here is the difference between (targeted - baseline)
130
131
Returns them in that specific order
131
132
"""
133
+
132
134
# Load in data and get the means across folds
133
135
df_baseline_classification = pd .read_csv (baseline_csv_classification )
134
136
df_baseline_regression = pd .read_csv (baseline_csv_regression )
@@ -138,7 +140,6 @@ def create_comparison(
138
140
df_targeted_classification = pd .read_csv (targeted_csv_classification )
139
141
df_targeted_regression = pd .read_csv (targeted_csv_regression )
140
142
df_targeted = pd .concat ([df_targeted_classification , df_targeted_regression ])
141
-
142
143
df_targeted_means = _get_mean_results_across_folds (df_targeted )
143
144
144
145
# Find the set intersection of tasks they have in common
@@ -453,6 +454,7 @@ def tolerance_colour(baseline_value, comparison_value, metric):
453
454
if args .generate_framework_def :
454
455
455
456
assert args .owner and args .branch and args .commit and args .user_dir
457
+
456
458
generate_framework_def (args .user_dir , args .owner , args .branch , args .commit )
457
459
458
460
elif args .compare_results :
0 commit comments