Skip to content

Commit 1c13edf

Browse files
author
Github Actions
committed
Difan Deng: [FIX] Numerical stability scaling for timeseries forecasting tasks (#467)
1 parent a5861b2 commit 1c13edf

35 files changed

+211
-234
lines changed
Binary file not shown.
Binary file not shown.
-1.25 KB
Loading
302 Bytes
Loading
-876 Bytes
Loading
-780 Bytes
Loading

development/_sources/examples/20_basics/example_image_classification.rst.txt

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -33,22 +33,22 @@ Image Classification
3333
3434
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
3535
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz
36-
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 32768/26421880 [00:00<01:53, 231928.47it/s] 0%| | 65536/26421880 [00:00<01:54, 230908.71it/s] 0%| | 131072/26421880 [00:00<01:18, 335717.81it/s] 1%| | 229376/26421880 [00:00<00:55, 475759.79it/s] 2%|1 | 425984/26421880 [00:00<00:32, 802339.36it/s] 3%|3 | 884736/26421880 [00:00<00:15, 1625120.17it/s] 7%|6 | 1736704/26421880 [00:00<00:08, 3049193.29it/s] 13%|#3 | 3473408/26421880 [00:01<00:03, 5962888.68it/s] 25%|##4 | 6488064/26421880 [00:01<00:01, 10712916.76it/s] 36%|###5 | 9469952/26421880 [00:01<00:01, 13863205.21it/s] 47%|####6 | 12320768/26421880 [00:01<00:00, 15731289.51it/s] 58%|#####8 | 15368192/26421880 [00:01<00:00, 17458237.61it/s] 69%|######9 | 18317312/26421880 [00:01<00:00, 18442026.10it/s] 80%|######## | 21200896/26421880 [00:01<00:00, 18980240.42it/s] 91%|######### | 24018944/26421880 [00:02<00:00, 19215170.92it/s] 100%|##########| 26421880/26421880 [00:02<00:00, 12287565.88it/s]
36+
0%| | 0/26421880 [00:00<?, ?it/s] 0%| | 32768/26421880 [00:00<01:55, 228713.09it/s] 0%| | 65536/26421880 [00:00<01:56, 227081.28it/s] 0%| | 131072/26421880 [00:00<01:19, 330056.26it/s] 1%| | 196608/26421880 [00:00<01:09, 378551.45it/s] 1%|1 | 393216/26421880 [00:00<00:35, 731618.16it/s] 3%|2 | 786432/26421880 [00:00<00:18, 1407417.98it/s] 6%|6 | 1605632/26421880 [00:01<00:08, 2797236.93it/s] 12%|#2 | 3211264/26421880 [00:01<00:04, 5436945.91it/s] 24%|##3 | 6324224/26421880 [00:01<00:01, 10460303.77it/s] 36%|###5 | 9404416/26421880 [00:01<00:01, 13800083.86it/s] 47%|####6 | 12320768/26421880 [00:01<00:00, 15735845.44it/s] 58%|#####8 | 15433728/26421880 [00:01<00:00, 17486398.69it/s] 70%|######9 | 18481152/26421880 [00:01<00:00, 18557130.94it/s] 82%|########1 | 21594112/26421880 [00:02<00:00, 19438388.55it/s] 94%|#########3| 24707072/26421880 [00:02<00:00, 20016132.86it/s] 100%|##########| 26421880/26421880 [00:02<00:00, 12140078.32it/s]
3737
Extracting ../datasets/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
3838
3939
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
4040
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz
41-
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 211498.05it/s] 100%|##########| 29515/29515 [00:00<00:00, 211025.39it/s]
41+
0%| | 0/29515 [00:00<?, ?it/s] 100%|##########| 29515/29515 [00:00<00:00, 217304.48it/s] 100%|##########| 29515/29515 [00:00<00:00, 216810.10it/s]
4242
Extracting ../datasets/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
4343

4444
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
4545
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
46-
0%| | 0/4422102 [00:00<?, ?it/s] 1%| | 32768/4422102 [00:00<00:18, 231252.57it/s] 1%|1 | 65536/4422102 [00:00<00:18, 230353.14it/s] 3%|2 | 131072/4422102 [00:00<00:12, 335518.37it/s] 5%|5 | 229376/4422102 [00:00<00:08, 475818.21it/s] 10%|9 | 425984/4422102 [00:00<00:04, 802625.41it/s] 20%|## | 884736/4422102 [00:00<00:02, 1625946.95it/s] 39%|###9 | 1736704/4422102 [00:00<00:00, 3050846.50it/s] 79%|#######8 | 3473408/4422102 [00:01<00:00, 5961671.44it/s] 100%|##########| 4422102/4422102 [00:01<00:00, 3878389.21it/s]
46+
0%| | 0/4422102 [00:00<?, ?it/s] 1%| | 32768/4422102 [00:00<00:18, 242036.89it/s] 1%|1 | 65536/4422102 [00:00<00:18, 241466.08it/s] 3%|2 | 131072/4422102 [00:00<00:12, 351200.05it/s] 5%|5 | 229376/4422102 [00:00<00:08, 497890.59it/s] 11%|#1 | 491520/4422102 [00:00<00:03, 1013070.38it/s] 21%|##1 | 950272/4422102 [00:00<00:01, 1815514.97it/s] 43%|####2 | 1900544/4422102 [00:00<00:00, 3507016.73it/s] 87%|########6 | 3833856/4422102 [00:01<00:00, 6913829.45it/s] 100%|##########| 4422102/4422102 [00:01<00:00, 4060498.86it/s]
4747
Extracting ../datasets/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../datasets/FashionMNIST/raw
4848

4949
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
5050
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
51-
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 40359396.25it/s]
51+
0%| | 0/5148 [00:00<?, ?it/s] 100%|##########| 5148/5148 [00:00<00:00, 40586986.83it/s]
5252
Extracting ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
5353

5454
Pipeline CS:
@@ -83,25 +83,25 @@ Image Classification
8383
Pipeline Random Config:
8484
________________________________________
8585
Configuration(values={
86-
'image_augmenter:GaussianBlur:use_augmenter': False,
87-
'image_augmenter:GaussianNoise:use_augmenter': False,
88-
'image_augmenter:RandomAffine:rotate': 0,
89-
'image_augmenter:RandomAffine:scale_offset': 0.09817883435719255,
90-
'image_augmenter:RandomAffine:shear': 3,
91-
'image_augmenter:RandomAffine:translate_percent_offset': 0.092968162759446,
92-
'image_augmenter:RandomAffine:use_augmenter': True,
93-
'image_augmenter:RandomCutout:use_augmenter': False,
86+
'image_augmenter:GaussianBlur:sigma_min': 0.40736851695519793,
87+
'image_augmenter:GaussianBlur:sigma_offset': 1.9154521101106374,
88+
'image_augmenter:GaussianBlur:use_augmenter': True,
89+
'image_augmenter:GaussianNoise:sigma_offset': 2.1494393981863014,
90+
'image_augmenter:GaussianNoise:use_augmenter': True,
91+
'image_augmenter:RandomAffine:use_augmenter': False,
92+
'image_augmenter:RandomCutout:p': 0.7558153204326064,
93+
'image_augmenter:RandomCutout:use_augmenter': True,
9494
'image_augmenter:Resize:use_augmenter': True,
95-
'image_augmenter:ZeroPadAndCrop:percent': 0.011876312992094795,
96-
'normalizer:__choice__': 'NoNormalizer',
95+
'image_augmenter:ZeroPadAndCrop:percent': 0.08168973511042621,
96+
'normalizer:__choice__': 'ImageNormalizer',
9797
})
9898

9999
Fitting the pipeline...
100100
________________________________________
101101
ImageClassificationPipeline
102102
________________________________________
103103
0-) normalizer:
104-
NoNormalizer
104+
ImageNormalizer
105105

106106
1-) preprocessing:
107107
EarlyPreprocessing
@@ -173,7 +173,7 @@ Image Classification
173173
174174
.. rst-class:: sphx-glr-timing
175175

176-
**Total running time of the script:** ( 0 minutes 6.988 seconds)
176+
**Total running time of the script:** ( 0 minutes 7.417 seconds)
177177

178178

179179
.. _sphx_glr_download_examples_20_basics_example_image_classification.py:

development/_sources/examples/20_basics/example_tabular_classification.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,7 @@ Search for an ensemble of machine learning algorithms
132132
.. code-block:: none
133133
134134
135-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f494b86b6d0>
135+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7f3976b6a0>
136136
137137
138138
@@ -186,7 +186,7 @@ Print the final ensemble performance
186186
187187
.. rst-class:: sphx-glr-timing
188188

189-
**Total running time of the script:** ( 5 minutes 23.914 seconds)
189+
**Total running time of the script:** ( 5 minutes 20.861 seconds)
190190

191191

192192
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:

development/_sources/examples/20_basics/example_tabular_regression.rst.txt

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -123,7 +123,7 @@ Search for an ensemble of machine learning algorithms
123123
.. code-block:: none
124124
125125
126-
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f48bb5eeca0>
126+
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f7ea94eb340>
127127
128128
129129
@@ -163,7 +163,7 @@ Print the final ensemble performance
163163
| 2 | SimpleImputer,Variance Threshold,NoCoalescer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
164164
| 3 | None | LGBMLearner | 0.04 |
165165
autoPyTorch results:
166-
Dataset name: 67f4ff2e-17dc-11ed-88b6-f144ec8da2bd
166+
Dataset name: a65f386c-17ee-11ed-88a4-a98c1c8ad0eb
167167
Optimisation Metric: r2
168168
Best validation score: 0.8670098636440993
169169
Number of target algorithm runs: 23
@@ -179,7 +179,7 @@ Print the final ensemble performance
179179
180180
.. rst-class:: sphx-glr-timing
181181

182-
**Total running time of the script:** ( 5 minutes 35.994 seconds)
182+
**Total running time of the script:** ( 5 minutes 34.705 seconds)
183183

184184

185185
.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:

development/_sources/examples/20_basics/example_time_series_forecasting.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ Search for an ensemble of machine learning algorithms
150150
151151
.. rst-class:: sphx-glr-timing
152152

153-
**Total running time of the script:** ( 0 minutes 58.007 seconds)
153+
**Total running time of the script:** ( 0 minutes 57.742 seconds)
154154

155155

156156
.. _sphx_glr_download_examples_20_basics_example_time_series_forecasting.py:

0 commit comments

Comments
 (0)