|
| 1 | +import coremltools as ct |
| 2 | +import logging |
| 3 | +import math |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torch.optim as optim |
| 8 | + |
| 9 | +from matplotlib import pyplot as plt |
| 10 | +from typing import Tuple |
| 11 | + |
| 12 | +from src.depth_pro.depth_pro import ( |
| 13 | + create_model_and_transforms, |
| 14 | + create_backbone_model, |
| 15 | + DEFAULT_MONODEPTH_CONFIG_DICT |
| 16 | +) |
| 17 | +from src.depth_pro.network.fov import FOVNetwork |
| 18 | +from src.depth_pro.network.vit import resize_vit, resize_patch_embed |
| 19 | +from src.depth_pro.utils import load_rgb |
| 20 | + |
| 21 | +from torchvision.transforms import ( |
| 22 | + Compose, |
| 23 | + ConvertImageDtype, |
| 24 | + Lambda, |
| 25 | + Normalize, |
| 26 | + ToTensor |
| 27 | +) |
| 28 | + |
| 29 | +class DepthProRun(nn.Module): |
| 30 | + def __init__(self, transform: nn.Module, encoder: nn.Module, decoder: nn.Module, depth: nn.Module): |
| 31 | + super().__init__() |
| 32 | + self.transform = transform |
| 33 | + self.encoder = encoder |
| 34 | + self.decoder = decoder |
| 35 | + self.depth = depth |
| 36 | + |
| 37 | + def forward(self, x: torch.Tensor) -> torch.Tensor: |
| 38 | + if x.shape[0] == 3: |
| 39 | + x = x.unsqueeze(0) |
| 40 | + image = self.transform(x) |
| 41 | + encodings = self.encoder(image) |
| 42 | + features, features_0 = self.decoder(encodings) |
| 43 | + depth = self.depth([image, features, features_0]) |
| 44 | + return depth |
| 45 | + |
| 46 | +class Depth(nn.Module): |
| 47 | + def __init__(self, head: nn.Module, fov: nn.Module): |
| 48 | + super(Depth, self).__init__() |
| 49 | + self.head = head |
| 50 | + self.fov = fov |
| 51 | + |
| 52 | + def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
| 53 | + x = inputs[0] |
| 54 | + features = inputs[1] |
| 55 | + features_0 = inputs[2] |
| 56 | + _, _, H, W = x.shape |
| 57 | + # using default size 1536 until fov_encoder resizing succeeds |
| 58 | + # 1024 is the expected size to compare against then |
| 59 | + if H != 1536 or W != 1536: |
| 60 | + x = nn.functional.interpolate( |
| 61 | + x, |
| 62 | + size=(1536, 1536), |
| 63 | + mode="bilinear", |
| 64 | + align_corners=False, |
| 65 | + ) |
| 66 | + # this is needed until resizing fov_encoder succeeds |
| 67 | + # the surrent resized size (32, 32) is correct here then |
| 68 | + features_0 = nn.functional.interpolate( |
| 69 | + features_0, |
| 70 | + size=(48, 48), |
| 71 | + mode="bilinear", |
| 72 | + align_corners=False, |
| 73 | + ) |
| 74 | + canonical_inverse_depth = self.head(features) |
| 75 | + fov_deg = self.fov.forward(x, features_0.detach()) |
| 76 | + f_px = 0.5 * torch.tan(math.pi * fov_deg.to(torch.float) / 360.0) |
| 77 | + inverse_depth = canonical_inverse_depth * f_px |
| 78 | + depth = 1.0 / inverse_depth.clamp(min=1e-4, max=1e4) |
| 79 | + return depth |
| 80 | + |
| 81 | +class Interpolate(nn.Module): |
| 82 | + def __init__(self, size, mode): |
| 83 | + super(Interpolate, self).__init__() |
| 84 | + self.interp = nn.functional.interpolate |
| 85 | + self.size = size |
| 86 | + self.mode = mode |
| 87 | + |
| 88 | + def forward(self, x: torch.Tensor) -> torch.Tensor: |
| 89 | + x = self.interp(x, size=self.size, mode=self.mode, align_corners=False) |
| 90 | + return x |
| 91 | + |
| 92 | +def save_mlpackage(G, shapes, name): |
| 93 | + G.eval() |
| 94 | + G_inputs = [] |
| 95 | + convert_inputs = [] |
| 96 | + for shape in shapes: |
| 97 | + G_inputs.append(torch.randn(shape)) |
| 98 | + convert_inputs.append(ct.TensorType(shape=shape, dtype=np.float16)) |
| 99 | + G_trace = torch.jit.trace(G, G_inputs if len(G_inputs) == 1 else [G_inputs]) |
| 100 | + G_model = ct.convert( |
| 101 | + G_trace, |
| 102 | + inputs=convert_inputs if len(convert_inputs) <= 1 else [convert_inputs], |
| 103 | + minimum_deployment_target=ct.target.macOS15, |
| 104 | + compute_precision=ct.precision.FLOAT16, |
| 105 | + compute_units=ct.ComputeUnit.CPU_AND_NE |
| 106 | + ) |
| 107 | + G_model.save("out/" + name + ".mlpackage") |
| 108 | + |
| 109 | +def create_scaled_model() -> Tuple[nn.Module, nn.Module, nn.Module]: |
| 110 | + # from run.py |
| 111 | + model, _ = create_model_and_transforms( |
| 112 | + device=torch.device("cpu"), |
| 113 | + precision=torch.float32, |
| 114 | + ) |
| 115 | + |
| 116 | + new_img_size = (256, 256) |
| 117 | + # resize to 256x4 = 1024x1024 input image |
| 118 | + model.encoder.patch_encoder = resize_patch_embed(model.encoder.patch_encoder) |
| 119 | + model.encoder.patch_encoder = resize_vit(model.encoder.patch_encoder, img_size=new_img_size) |
| 120 | + model.encoder.image_encoder = resize_patch_embed(model.encoder.image_encoder) |
| 121 | + model.encoder.image_encoder = resize_vit(model.encoder.image_encoder, img_size=new_img_size) |
| 122 | + model.encoder.out_size = int( |
| 123 | + model.encoder.patch_encoder.patch_embed.img_size[0] // model.encoder.patch_encoder.patch_embed.patch_size[0] |
| 124 | + ) |
| 125 | + |
| 126 | + # this is still under works to resize fov_encoder to 1024x1024 size too |
| 127 | + # fov_encoder, _ = create_backbone_model(preset = DEFAULT_MONODEPTH_CONFIG_DICT.fov_encoder_preset) |
| 128 | + # fov_encoder = resize_patch_embed(fov_encoder) |
| 129 | + # fov_encoder = resize_vit(fov_encoder, img_size=new_img_size) |
| 130 | + # model.fov = FOVNetwork(num_features=model.decoder.dim_decoder, fov_encoder=fov_encoder) |
| 131 | + |
| 132 | + # from depth_pro.py |
| 133 | + transform = nn.Sequential( |
| 134 | + #[ |
| 135 | + #ToTensor(), |
| 136 | + #Lambda(lambda x: x.to(device)), |
| 137 | + Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), |
| 138 | + Interpolate( |
| 139 | + size=(model.img_size, model.img_size), |
| 140 | + mode="bilinear" |
| 141 | + ), |
| 142 | + ConvertImageDtype(torch.float32), |
| 143 | + #] |
| 144 | + ) |
| 145 | + |
| 146 | + depth = Depth(model.head, model.fov) |
| 147 | + return transform, model, depth |
| 148 | + |
| 149 | +def load_and_show_example(transform: nn.Module, model: nn.Module, depth: nn.Module): |
| 150 | + image, _, _ = load_rgb("data/example.jpg") |
| 151 | + depth_pro_run = DepthProRun(transform, model.encoder, model.decoder, depth) |
| 152 | + |
| 153 | + depth_pro = Compose([ToTensor(), Lambda(lambda x: x.to(torch.device("cpu"))), depth_pro_run]) |
| 154 | + depth_map = depth_pro(image).detach().cpu().numpy().squeeze() |
| 155 | + |
| 156 | + plt.ion() |
| 157 | + fig = plt.figure() |
| 158 | + ax_rgb = fig.add_subplot(121) |
| 159 | + ax_disp = fig.add_subplot(122) |
| 160 | + ax_rgb.imshow(image) |
| 161 | + ax_disp.imshow(depth_map, cmap="turbo") |
| 162 | + fig.canvas.draw() |
| 163 | + fig.canvas.flush_events() |
| 164 | + plt.show(block=True) |
| 165 | + |
| 166 | +def save_coreml_packages(transform: nn.Module, model: nn.Module, depth: nn.Module): |
| 167 | + save_mlpackage(transform, [[1, 3, 1024, 1024]], "DepthPro_transform") |
| 168 | + save_mlpackage(model.encoder, [[1, 3, 1024, 1024]], "DepthPro_encoder") |
| 169 | + save_mlpackage(model.decoder, [[1, 256, 512, 512], [1, 256, 256, 256], [1, 512, 128, 128], [1, 1024, 64, 64], [1, 1024, 32, 32]], "DepthPro_decoder") |
| 170 | + save_mlpackage(depth, [[1, 3, 1024, 1024], [1, 256, 512, 512], [1, 256, 32, 32]], "DepthPro_depth") |
| 171 | + |
| 172 | +if __name__ == "__main__": |
| 173 | + transform, model, depth = create_scaled_model() |
| 174 | + load_and_show_example(transform, model, depth) |
| 175 | + save_coreml_packages(transform, model, depth) |
0 commit comments