Skip to content

Commit f2559d8

Browse files
authored
Merge pull request aws#143 from awslabs/arpin_free_hosting_instances
Arpin free hosting instances
2 parents e7aa938 + a238774 commit f2559d8

File tree

29 files changed

+35
-35
lines changed

29 files changed

+35
-35
lines changed

advanced_functionality/data_distribution_types/data_distribution_types.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -517,7 +517,7 @@
517517
"sharded_endpoint_config_response = sm.create_endpoint_config(\n",
518518
" EndpointConfigName=sharded_endpoint_config,\n",
519519
" ProductionVariants=[{\n",
520-
" 'InstanceType': 'ml.c4.2xlarge',\n",
520+
" 'InstanceType': 'ml.m4.xlarge',\n",
521521
" 'InitialInstanceCount': 1,\n",
522522
" 'ModelName': sharded_job,\n",
523523
" 'VariantName': 'AllTraffic'}])\n",
@@ -536,7 +536,7 @@
536536
"replicated_endpoint_config_response = sm.create_endpoint_config(\n",
537537
" EndpointConfigName=replicated_endpoint_config,\n",
538538
" ProductionVariants=[{\n",
539-
" 'InstanceType': 'ml.c4.2xlarge',\n",
539+
" 'InstanceType': 'ml.m4.xlarge',\n",
540540
" 'InitialInstanceCount': 1,\n",
541541
" 'ModelName': replicated_job,\n",
542542
" 'VariantName': 'AllTraffic'}])\n",

advanced_functionality/kmeans_bring_your_own_model/kmeans_bring_your_own_model.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -236,7 +236,7 @@
236236
"create_endpoint_config_response = sm.create_endpoint_config(\n",
237237
" EndpointConfigName=kmeans_endpoint_config,\n",
238238
" ProductionVariants=[{\n",
239-
" 'InstanceType': 'ml.c4.xlarge',\n",
239+
" 'InstanceType': 'ml.m4.xlarge',\n",
240240
" 'InitialInstanceCount': 1,\n",
241241
" 'ModelName': kmeans_model,\n",
242242
" 'VariantName': 'AllTraffic'}])\n",

advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -433,7 +433,7 @@
433433
"outputs": [],
434434
"source": [
435435
"from sagemaker.predictor import csv_serializer\n",
436-
"predictor = tree.deploy(1, 'ml.c4.xlarge', serializer=csv_serializer)"
436+
"predictor = tree.deploy(1, 'ml.m4.xlarge', serializer=csv_serializer)"
437437
]
438438
},
439439
{

advanced_functionality/tensorflow_iris_byom/tensorflow_BYOM_iris.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -243,7 +243,7 @@
243243
"source": [
244244
"### Create endpoint\n",
245245
"\n",
246-
"Now the model is ready to be deployed at a SageMaker endpoint. We can use the ``sagemaker.mxnet.model.TensorFlowModel.deploy`` method to do this. Unless you have created or prefer other instances, we recommend using 1 ``'ml.c4.xlarge'`` instance for this example. These are supplied as arguments. "
246+
"Now the model is ready to be deployed at a SageMaker endpoint. We can use the ``sagemaker.mxnet.model.TensorFlowModel.deploy`` method to do this. Unless you have created or prefer other instances, we recommend using 1 ``'ml.m4.xlarge'`` instance for this example. These are supplied as arguments. "
247247
]
248248
},
249249
{
@@ -254,7 +254,7 @@
254254
"source": [
255255
"%%time\n",
256256
"predictor = sagemaker_model.deploy(initial_instance_count=1,\n",
257-
" instance_type='ml.c4.xlarge')"
257+
" instance_type='ml.m4.xlarge')"
258258
]
259259
},
260260
{

introduction_to_amazon_algorithms/factorization_machines_mnist/factorization_machines_mnist.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -277,7 +277,7 @@
277277
"outputs": [],
278278
"source": [
279279
"fm_predictor = fm.deploy(initial_instance_count=1,\n",
280-
" instance_type='ml.c4.xlarge')"
280+
" instance_type='ml.m4.xlarge')"
281281
]
282282
},
283283
{

introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -393,7 +393,7 @@
393393
"endpoint_config_response = sage.create_endpoint_config(\n",
394394
" EndpointConfigName = endpoint_config_name,\n",
395395
" ProductionVariants=[{\n",
396-
" 'InstanceType':'ml.p2.xlarge',\n",
396+
" 'InstanceType':'ml.m4.xlarge',\n",
397397
" 'InitialInstanceCount':1,\n",
398398
" 'ModelName':model_name,\n",
399399
" 'VariantName':'AllTraffic'}])\n",

introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-transfer-learning.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -409,7 +409,7 @@
409409
"endpoint_config_response = sage.create_endpoint_config(\n",
410410
" EndpointConfigName = endpoint_config_name,\n",
411411
" ProductionVariants=[{\n",
412-
" 'InstanceType':'ml.p2.xlarge',\n",
412+
" 'InstanceType':'ml.m4.xlarge',\n",
413413
" 'InitialInstanceCount':1,\n",
414414
" 'ModelName':model_name,\n",
415415
" 'VariantName':'AllTraffic'}])\n",

introduction_to_amazon_algorithms/lda_topic_modeling/LDA-Introduction.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -396,7 +396,7 @@
396396
"source": [
397397
"lda_inference = lda.deploy(\n",
398398
" initial_instance_count=1,\n",
399-
" instance_type='ml.c4.xlarge', # LDA inference works best on ml.c4 instances\n",
399+
" instance_type='ml.m4.xlarge', # LDA inference may work better at scale on ml.c4 instances\n",
400400
")"
401401
]
402402
},

introduction_to_amazon_algorithms/linear_learner_mnist/linear_learner_mnist.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -273,7 +273,7 @@
273273
"outputs": [],
274274
"source": [
275275
"linear_predictor = linear.deploy(initial_instance_count=1,\n",
276-
" instance_type='ml.c4.xlarge')"
276+
" instance_type='ml.m4.xlarge')"
277277
]
278278
},
279279
{

introduction_to_amazon_algorithms/ntm_synthetic/ntm_synthetic.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -293,7 +293,7 @@
293293
"outputs": [],
294294
"source": [
295295
"ntm_predictor = ntm.deploy(initial_instance_count=1,\n",
296-
" instance_type='ml.c4.xlarge')"
296+
" instance_type='ml.m4.xlarge')"
297297
]
298298
},
299299
{

0 commit comments

Comments
 (0)