Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions mllib/src/main/scala/org/apache/spark/ml/attribute/Attribute.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.attribute

import org.apache.spark.sql.types.{MetadataBuilder, Metadata}

abstract class Attribute(val index: Int,
val name: Option[String],
val dimension: Int) {

require(index >= 0)
require(dimension >= 1)

def featureType: FeatureType

def toMetadata(): Metadata

private[attribute] def toBaseMetadata(): MetadataBuilder = {
val builder = new MetadataBuilder()
builder.putLong("index", index)
if (name.isDefined) {
builder.putString("name", name.get)
}
if (dimension > 1) {
builder.putLong("dimension", dimension)
}
builder
}

}

object Attribute {

def fromMetadata(metadata: Metadata): Attribute = {
FeatureTypes.withName(metadata.getString("type")) match {
case Categorical => CategoricalAttribute.fromMetadata(metadata)
case Continuous => ContinuousAttribute.fromMetadata(metadata)
}
}

private[attribute] def parseBaseMetadata(metadata: Metadata): (Int, Option[String], Int) = {
val index = metadata.getLong("index").toInt
val name = if (metadata.contains("name")) Some(metadata.getString("name")) else None
val dimension = if (metadata.contains("dimension")) metadata.getLong("dimension").toInt else 1
(index, name, dimension)
}

}
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.attribute

import org.apache.spark.sql.types.Metadata

class CategoricalAttribute private (
override val index: Int,
override val name: Option[String],
override val dimension: Int,
val categories: Option[Array[String]],
val cardinality: Option[Int]) extends Attribute(index, name, dimension) {

require(!categories.isDefined || categories.get.nonEmpty)
require(!cardinality.isDefined || cardinality.get > 0)

override def featureType: FeatureType = Categorical

override def toMetadata(): Metadata = {
val builder = toBaseMetadata()
if (categories.isDefined) {
builder.putStringArray("categories", categories.get)
}
if (cardinality.isDefined) {
builder.putLong("cardinality", cardinality.get)
}
builder.build()
}

}

private[attribute] object CategoricalAttribute {

def fromMetadata(metadata: Metadata): CategoricalAttribute = {
val (index, name, dimension) = Attribute.parseBaseMetadata(metadata)

var cardinality: Option[Int] =
if (metadata.contains("cardinality")) {
Some(metadata.getLong("cardinality").toInt)
} else {
None
}

val categories: Option[Array[String]] =
if (metadata.contains("categories")) {
val theCategories = Some(metadata.getStringArray("categories"))
if (cardinality.isDefined) {
require(theCategories.get.size <= cardinality.get)
} else {
cardinality = Some(theCategories.get.size)
}
theCategories
} else {
None
}

new CategoricalAttribute(index, name, dimension, categories, cardinality)
}

}
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.attribute

import org.apache.spark.sql.types.Metadata

class ContinuousAttribute private (
override val index: Int,
override val name: Option[String],
override val dimension: Int,
val min: Option[Double],
val max: Option[Double]) extends Attribute(index, name, dimension) {

if (min.isDefined && max.isDefined) {
require(min.get <= max.get)
}

override def featureType(): FeatureType = Continuous

override def toMetadata(): Metadata = {
val builder = toBaseMetadata()
if (min.isDefined) {
builder.putDouble("min", min.get)
}
if (max.isDefined) {
builder.putDouble("max", max.get)
}
builder.build()
}

}

private[attribute] object ContinuousAttribute {

def fromMetadata(metadata: Metadata): ContinuousAttribute = {
val (index, name, dimension) = Attribute.parseBaseMetadata(metadata)
val min = if (metadata.contains("min")) Some(metadata.getDouble("min")) else None
val max = if (metadata.contains("max")) Some(metadata.getDouble("max")) else None
new ContinuousAttribute(index, name, dimension, min, max)
}

}
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.attribute

import org.apache.spark.sql.types.{MetadataBuilder, Metadata}

/**
* Representation of specialized information in a [[Metadata]] concerning
* data as machine learning features, with methods to access their associated attributes, like:
*
* - type (continuous, categorical, etc.) as [[FeatureType]]
* - optional feature name
* - for categorical features, the category values
* - for continuous values, maximum and minimum value
* - dimension for vector-valued features
*
* This information is stored as a [[Metadata]] under key "features", and contains an array of
* [[Metadata]] inside that for each feature for which metadata is defined. Example:
*
* {{{
* {
* ...
* "features" : [
* {
* "index": 0,
* "name": "age",
* "type": "CONTINUOUS",
* "min": 0
* },
* {
* "index": 5,
* "name": "gender",
* "type": "CATEGORICAL",
* "categories" : [ "male", "female" ]
* },
* {
* "index": 6,
* "name": "customerType",
* "type": "CATEGORICAL",
* "cardinality": 10
* },
* {
* "index": 7,
* "name": "percentAllocations",
* "type": "CONTINUOUS",
* "dimension": 10,
* "min": 0,
* "max": 1
* ]
* "producer": "..."
* ...
* }
* }}}
*/
class FeatureAttributes private (val attributes: Array[Attribute],
val producer: Option[String]) {

private val nameToIndex: Map[String,Int] =
attributes.filter(_.name.isDefined).map(att => (att.name.get, att.index)).toMap
private val indexToAttribute: Map[Int,Attribute] =
attributes.map(att => (att.index, att)).toMap
private val categoricalIndices: Array[Int] =
attributes.filter(_.featureType match {
case c: CategoricalFeatureType => true
case _ => false
}).map(_.index)

def getFeatureAttribute(index: Int): Option[Attribute] = indexToAttribute.get(index)

def getFeatureIndex(featureName: String): Option[Int] = nameToIndex.get(featureName)

def categoricalFeatureIndices(): Array[Int] = categoricalIndices

def toMetadata(): Metadata = {
val builder = new MetadataBuilder()
builder.putMetadataArray("features", attributes.map(_.toMetadata()))
if (producer.isDefined) {
builder.putString("producer", producer.get)
}
builder.build()
}

}

object FeatureAttributes {

def fromMetadata(metadata: Metadata): FeatureAttributes = {
val attributes = metadata.getMetadataArray("features").map(Attribute.fromMetadata(_))
val producer =
if (metadata.contains("producer")) Some(metadata.getString("producer")) else None
new FeatureAttributes(attributes, producer)
}

}
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.attribute

sealed trait FeatureType

sealed trait ContinuousFeatureType extends FeatureType
sealed trait CategoricalFeatureType extends FeatureType
sealed trait DiscreteFeatureType extends ContinuousFeatureType

case object Continuous extends ContinuousFeatureType
case object Categorical extends CategoricalFeatureType
case object Discrete extends DiscreteFeatureType
case object Binary extends DiscreteFeatureType with CategoricalFeatureType

object FeatureTypes {
def withName(name: String): FeatureType = name match {
case "CONTINUOUS" => Continuous
case "CATEGORICAL" => Categorical
case "DISCRETE" => Discrete
case "BINARY" => Binary
}
}