-
Notifications
You must be signed in to change notification settings - Fork 28.9k
[SPARK-32380][SQL] fixed spark3.0 access hive table while data in hbase problem #29178
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank you for making your first contribution, @DeyinZhong . So, this is only Apache Spark 3.0.0 issue?
IIRC, Apache Spark doesn't support Hive Storage Handler officially although it worked in some cases when you create from Hive side. We don't have a test coverage for this. So, I guess HBaseStorageHandler (this PR) and DruidStorageHandler and more might be in the same situation. In that case, we need a more general solution instead of one-by-one exception handling like !inputFormatClazz.getName.equalsIgnoreCase("org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat").
| if (classOf[newInputClass[_, _]].isAssignableFrom(inputFormatClazz)) { | ||
| if (!inputFormatClazz.getName. | ||
| equalsIgnoreCase("org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat") | ||
| && classOf[newInputClass[_, _]].isAssignableFrom(inputFormatClazz)) { |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you think we can have a test case for this?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I try Spark2.4.3 can work well.
spark3.0.0 will createNewHadoopRDD, and call 'val allRowSplits = inputFormat.getSplits(new JobContextImpl(_conf, jobId)).asScala' in method getPartitions, this will call TableInputFormatBase.getSplits(JobContext context), but the variable table is null, so throw the execption;
|
Since this might be a regression due to SPARK-26630 , cc @gatorsmile and @HyukjinKwon , too. |
|
ok to test |
|
Test build #126261 has finished for PR 29178 at commit
|
| val inputFormatClazz = localTableDesc.getInputFileFormatClass | ||
| if (classOf[newInputClass[_, _]].isAssignableFrom(inputFormatClazz)) { | ||
| if (!inputFormatClazz.getName. | ||
| equalsIgnoreCase("org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat") |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you know why org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat implements new Hadoop inputformat interface but doesn't work?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It looks like the new MapReduce API (org.apache.hadoop.mapreduce) used when creating NewHadoopRDD , but The getsplits method of HiveHBaseTableInputFormat is implemented by org.apache.hadoop.mapred API,so some initialization operations (Table、connection) are not done,so the obtained variable table is null.And when using methord createOldHadoopRDD will use the org.apache.hadoop.mapred API,and some initialization operations (Table、connection) are doing,so it can work well.
|
We're closing this PR because it hasn't been updated in a while. This isn't a judgement on the merit of the PR in any way. It's just a way of keeping the PR queue manageable. |
|
Kubernetes integration test starting |
|
Kubernetes integration test status success |
|
Test build #133854 has finished for PR 29178 at commit
|
### What changes were proposed in this pull request? This is an update of #29178 which was closed because the root cause of the error was just vaguely defined there but here I will give an explanation why `HiveHBaseTableInputFormat` does not work well with the `NewHadoopRDD` (see in the next section). The PR modify `TableReader.scala` to create `OldHadoopRDD` when input format is 'org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat'. - environments (Cloudera distribution 7.1.7.SP1): hadoop 3.1.1 hive 3.1.300 spark 3.2.1 hbase 2.2.3 ### Why are the changes needed? With the `NewHadoopRDD` the following exception is raised: ``` java.io.IOException: Cannot create a record reader because of a previous error. Please look at the previous logs lines from the task's full log for more details. at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:253) at org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:131) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:446) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704) at org.apache.spark.sql.Dataset.head(Dataset.scala:2728) at org.apache.spark.sql.Dataset.take(Dataset.scala:2935) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:287) at org.apache.spark.sql.Dataset.showString(Dataset.scala:326) at org.apache.spark.sql.Dataset.show(Dataset.scala:806) at org.apache.spark.sql.Dataset.show(Dataset.scala:765) at org.apache.spark.sql.Dataset.show(Dataset.scala:774) ... 47 elided Caused by: java.lang.IllegalStateException: The input format instance has not been properly initialized. Ensure you call initializeTable either in your constructor or initialize method at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getTable(TableInputFormatBase.java:557) at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:248) ... 86 more ``` ### Short summary of the root cause There are two interfaces: - the new `org.apache.hadoop.mapreduce.InputFormat`: providing a one arg method `getSplits(JobContext context)` (returning `List<InputSplit>`) - the old `org.apache.hadoop.mapred.InputFormat`: providing a two arg method `getSplits(JobConf job, int numSplits)` (returning `InputSplit[]`) And in Hive both are implemented by `HiveHBaseTableInputFormat` but only the old method leads to required initialisation and this why `NewHadoopRDD` fails here. ### Detailed analyses Here all the link refers latest commits of the master branches for the mentioned components at the time of writing this description (to get the right line numbers in the future too as `master` itself is a moving target). Spark in `NewHadoopRDD` uses the new interface providing the one arg method: https://github.com/apache/spark/blob/5556cfc59aa97a3ad4ea0baacebe19859ec0bcb7/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala#L136 Hive on the other hand binds the initialisation to the two args method coming from the old interface. See [Hive#getSplits](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L268): ``` Override public InputSplit[] getSplits(final JobConf jobConf, final int numSplits) throws IOException { ``` This calls `getSplitsInternal` which contains the [initialisation](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L299) too: ``` initializeTable(conn, tableName); ``` Interesting that Hive also uses the one arg method internally within the `getSplitsInternal` [here](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L356) but the initialisation done earlier. By calling the new interface method (what `NewHadoopRDD` does) the call goes straight to the HBase method: [org.apache.hadoop.hbase.mapreduce.TableInputFormatBase#getSplits](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L230). Where there would be some `JobContext` based [initialisation](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L234-L237) which by default is an [empty method](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L628-L640): ```java /** * Handle subclass specific set up. Each of the entry points used by the MapReduce framework, * {link #createRecordReader(InputSplit, TaskAttemptContext)} and {link #getSplits(JobContext)}, * will call {link #initialize(JobContext)} as a convenient centralized location to handle * retrieving the necessary configuration information and calling * {link #initializeTable(Connection, TableName)}. Subclasses should implement their initialize * call such that it is safe to call multiple times. The current TableInputFormatBase * implementation relies on a non-null table reference to decide if an initialize call is needed, * but this behavior may change in the future. In particular, it is critical that initializeTable * not be called multiple times since this will leak Connection instances. */ protected void initialize(JobContext context) throws IOException { } ``` This is not overridden by Hive and hard to reason why we need that (its an internal Hive class) so it is easier to fix this in Spark. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? 1) create hbase table ``` hbase(main):001:0>create 'hbase_test1', 'cf1' hbase(main):001:0> put 'hbase_test', 'r1', 'cf1:c1', '123' ``` 2) create hive table related to hbase table hive> ``` CREATE EXTERNAL TABLE `hivetest.hbase_test`( `key` string COMMENT '', `value` string COMMENT '') ROW FORMAT SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe' STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ( 'hbase.columns.mapping'=':key,cf1:v1', 'serialization.format'='1') TBLPROPERTIES ( 'hbase.table.name'='hbase_test') ``` 3): spark-shell query hive table while data in HBase ``` scala> spark.sql("select * from hivetest.hbase_test").show() 22/11/05 01:14:16 WARN conf.HiveConf: HiveConf of name hive.masking.algo does not exist 22/11/05 01:14:16 WARN client.HiveClientImpl: Detected HiveConf hive.execution.engine is 'tez' and will be reset to 'mr' to disable useless hive logic Hive Session ID = f05b6866-86df-4d88-9eea-f1c45043bb5f +---+-----+ |key|value| +---+-----+ | r1| 123| +---+-----+ ``` Closes #38516 from attilapiros/SPARK-32380. Authored-by: attilapiros <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]>
This is an update of #29178 which was closed because the root cause of the error was just vaguely defined there but here I will give an explanation why `HiveHBaseTableInputFormat` does not work well with the `NewHadoopRDD` (see in the next section). The PR modify `TableReader.scala` to create `OldHadoopRDD` when input format is 'org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat'. - environments (Cloudera distribution 7.1.7.SP1): hadoop 3.1.1 hive 3.1.300 spark 3.2.1 hbase 2.2.3 With the `NewHadoopRDD` the following exception is raised: ``` java.io.IOException: Cannot create a record reader because of a previous error. Please look at the previous logs lines from the task's full log for more details. at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:253) at org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:131) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:446) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704) at org.apache.spark.sql.Dataset.head(Dataset.scala:2728) at org.apache.spark.sql.Dataset.take(Dataset.scala:2935) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:287) at org.apache.spark.sql.Dataset.showString(Dataset.scala:326) at org.apache.spark.sql.Dataset.show(Dataset.scala:806) at org.apache.spark.sql.Dataset.show(Dataset.scala:765) at org.apache.spark.sql.Dataset.show(Dataset.scala:774) ... 47 elided Caused by: java.lang.IllegalStateException: The input format instance has not been properly initialized. Ensure you call initializeTable either in your constructor or initialize method at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getTable(TableInputFormatBase.java:557) at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:248) ... 86 more ``` There are two interfaces: - the new `org.apache.hadoop.mapreduce.InputFormat`: providing a one arg method `getSplits(JobContext context)` (returning `List<InputSplit>`) - the old `org.apache.hadoop.mapred.InputFormat`: providing a two arg method `getSplits(JobConf job, int numSplits)` (returning `InputSplit[]`) And in Hive both are implemented by `HiveHBaseTableInputFormat` but only the old method leads to required initialisation and this why `NewHadoopRDD` fails here. Here all the link refers latest commits of the master branches for the mentioned components at the time of writing this description (to get the right line numbers in the future too as `master` itself is a moving target). Spark in `NewHadoopRDD` uses the new interface providing the one arg method: https://github.com/apache/spark/blob/5556cfc59aa97a3ad4ea0baacebe19859ec0bcb7/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala#L136 Hive on the other hand binds the initialisation to the two args method coming from the old interface. See [Hive#getSplits](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L268): ``` Override public InputSplit[] getSplits(final JobConf jobConf, final int numSplits) throws IOException { ``` This calls `getSplitsInternal` which contains the [initialisation](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L299) too: ``` initializeTable(conn, tableName); ``` Interesting that Hive also uses the one arg method internally within the `getSplitsInternal` [here](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L356) but the initialisation done earlier. By calling the new interface method (what `NewHadoopRDD` does) the call goes straight to the HBase method: [org.apache.hadoop.hbase.mapreduce.TableInputFormatBase#getSplits](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L230). Where there would be some `JobContext` based [initialisation](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L234-L237) which by default is an [empty method](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L628-L640): ```java /** * Handle subclass specific set up. Each of the entry points used by the MapReduce framework, * {link #createRecordReader(InputSplit, TaskAttemptContext)} and {link #getSplits(JobContext)}, * will call {link #initialize(JobContext)} as a convenient centralized location to handle * retrieving the necessary configuration information and calling * {link #initializeTable(Connection, TableName)}. Subclasses should implement their initialize * call such that it is safe to call multiple times. The current TableInputFormatBase * implementation relies on a non-null table reference to decide if an initialize call is needed, * but this behavior may change in the future. In particular, it is critical that initializeTable * not be called multiple times since this will leak Connection instances. */ protected void initialize(JobContext context) throws IOException { } ``` This is not overridden by Hive and hard to reason why we need that (its an internal Hive class) so it is easier to fix this in Spark. No. 1) create hbase table ``` hbase(main):001:0>create 'hbase_test1', 'cf1' hbase(main):001:0> put 'hbase_test', 'r1', 'cf1:c1', '123' ``` 2) create hive table related to hbase table hive> ``` CREATE EXTERNAL TABLE `hivetest.hbase_test`( `key` string COMMENT '', `value` string COMMENT '') ROW FORMAT SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe' STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ( 'hbase.columns.mapping'=':key,cf1:v1', 'serialization.format'='1') TBLPROPERTIES ( 'hbase.table.name'='hbase_test') ``` 3): spark-shell query hive table while data in HBase ``` scala> spark.sql("select * from hivetest.hbase_test").show() 22/11/05 01:14:16 WARN conf.HiveConf: HiveConf of name hive.masking.algo does not exist 22/11/05 01:14:16 WARN client.HiveClientImpl: Detected HiveConf hive.execution.engine is 'tez' and will be reset to 'mr' to disable useless hive logic Hive Session ID = f05b6866-86df-4d88-9eea-f1c45043bb5f +---+-----+ |key|value| +---+-----+ | r1| 123| +---+-----+ ``` Closes #38516 from attilapiros/SPARK-32380. Authored-by: attilapiros <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]> (cherry picked from commit 7009ef0) Signed-off-by: Hyukjin Kwon <[email protected]>
This is an update of #29178 which was closed because the root cause of the error was just vaguely defined there but here I will give an explanation why `HiveHBaseTableInputFormat` does not work well with the `NewHadoopRDD` (see in the next section). The PR modify `TableReader.scala` to create `OldHadoopRDD` when input format is 'org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat'. - environments (Cloudera distribution 7.1.7.SP1): hadoop 3.1.1 hive 3.1.300 spark 3.2.1 hbase 2.2.3 With the `NewHadoopRDD` the following exception is raised: ``` java.io.IOException: Cannot create a record reader because of a previous error. Please look at the previous logs lines from the task's full log for more details. at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:253) at org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:131) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:446) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704) at org.apache.spark.sql.Dataset.head(Dataset.scala:2728) at org.apache.spark.sql.Dataset.take(Dataset.scala:2935) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:287) at org.apache.spark.sql.Dataset.showString(Dataset.scala:326) at org.apache.spark.sql.Dataset.show(Dataset.scala:806) at org.apache.spark.sql.Dataset.show(Dataset.scala:765) at org.apache.spark.sql.Dataset.show(Dataset.scala:774) ... 47 elided Caused by: java.lang.IllegalStateException: The input format instance has not been properly initialized. Ensure you call initializeTable either in your constructor or initialize method at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getTable(TableInputFormatBase.java:557) at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:248) ... 86 more ``` There are two interfaces: - the new `org.apache.hadoop.mapreduce.InputFormat`: providing a one arg method `getSplits(JobContext context)` (returning `List<InputSplit>`) - the old `org.apache.hadoop.mapred.InputFormat`: providing a two arg method `getSplits(JobConf job, int numSplits)` (returning `InputSplit[]`) And in Hive both are implemented by `HiveHBaseTableInputFormat` but only the old method leads to required initialisation and this why `NewHadoopRDD` fails here. Here all the link refers latest commits of the master branches for the mentioned components at the time of writing this description (to get the right line numbers in the future too as `master` itself is a moving target). Spark in `NewHadoopRDD` uses the new interface providing the one arg method: https://github.com/apache/spark/blob/5556cfc59aa97a3ad4ea0baacebe19859ec0bcb7/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala#L136 Hive on the other hand binds the initialisation to the two args method coming from the old interface. See [Hive#getSplits](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L268): ``` Override public InputSplit[] getSplits(final JobConf jobConf, final int numSplits) throws IOException { ``` This calls `getSplitsInternal` which contains the [initialisation](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L299) too: ``` initializeTable(conn, tableName); ``` Interesting that Hive also uses the one arg method internally within the `getSplitsInternal` [here](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L356) but the initialisation done earlier. By calling the new interface method (what `NewHadoopRDD` does) the call goes straight to the HBase method: [org.apache.hadoop.hbase.mapreduce.TableInputFormatBase#getSplits](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L230). Where there would be some `JobContext` based [initialisation](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L234-L237) which by default is an [empty method](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L628-L640): ```java /** * Handle subclass specific set up. Each of the entry points used by the MapReduce framework, * {link #createRecordReader(InputSplit, TaskAttemptContext)} and {link #getSplits(JobContext)}, * will call {link #initialize(JobContext)} as a convenient centralized location to handle * retrieving the necessary configuration information and calling * {link #initializeTable(Connection, TableName)}. Subclasses should implement their initialize * call such that it is safe to call multiple times. The current TableInputFormatBase * implementation relies on a non-null table reference to decide if an initialize call is needed, * but this behavior may change in the future. In particular, it is critical that initializeTable * not be called multiple times since this will leak Connection instances. */ protected void initialize(JobContext context) throws IOException { } ``` This is not overridden by Hive and hard to reason why we need that (its an internal Hive class) so it is easier to fix this in Spark. No. 1) create hbase table ``` hbase(main):001:0>create 'hbase_test1', 'cf1' hbase(main):001:0> put 'hbase_test', 'r1', 'cf1:c1', '123' ``` 2) create hive table related to hbase table hive> ``` CREATE EXTERNAL TABLE `hivetest.hbase_test`( `key` string COMMENT '', `value` string COMMENT '') ROW FORMAT SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe' STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ( 'hbase.columns.mapping'=':key,cf1:v1', 'serialization.format'='1') TBLPROPERTIES ( 'hbase.table.name'='hbase_test') ``` 3): spark-shell query hive table while data in HBase ``` scala> spark.sql("select * from hivetest.hbase_test").show() 22/11/05 01:14:16 WARN conf.HiveConf: HiveConf of name hive.masking.algo does not exist 22/11/05 01:14:16 WARN client.HiveClientImpl: Detected HiveConf hive.execution.engine is 'tez' and will be reset to 'mr' to disable useless hive logic Hive Session ID = f05b6866-86df-4d88-9eea-f1c45043bb5f +---+-----+ |key|value| +---+-----+ | r1| 123| +---+-----+ ``` Closes #38516 from attilapiros/SPARK-32380. Authored-by: attilapiros <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]> (cherry picked from commit 7009ef0) Signed-off-by: Hyukjin Kwon <[email protected]>
### What changes were proposed in this pull request? This is an update of apache/spark#29178 which was closed because the root cause of the error was just vaguely defined there but here I will give an explanation why `HiveHBaseTableInputFormat` does not work well with the `NewHadoopRDD` (see in the next section). The PR modify `TableReader.scala` to create `OldHadoopRDD` when input format is 'org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat'. - environments (Cloudera distribution 7.1.7.SP1): hadoop 3.1.1 hive 3.1.300 spark 3.2.1 hbase 2.2.3 ### Why are the changes needed? With the `NewHadoopRDD` the following exception is raised: ``` java.io.IOException: Cannot create a record reader because of a previous error. Please look at the previous logs lines from the task's full log for more details. at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:253) at org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:131) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:446) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704) at org.apache.spark.sql.Dataset.head(Dataset.scala:2728) at org.apache.spark.sql.Dataset.take(Dataset.scala:2935) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:287) at org.apache.spark.sql.Dataset.showString(Dataset.scala:326) at org.apache.spark.sql.Dataset.show(Dataset.scala:806) at org.apache.spark.sql.Dataset.show(Dataset.scala:765) at org.apache.spark.sql.Dataset.show(Dataset.scala:774) ... 47 elided Caused by: java.lang.IllegalStateException: The input format instance has not been properly initialized. Ensure you call initializeTable either in your constructor or initialize method at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getTable(TableInputFormatBase.java:557) at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:248) ... 86 more ``` ### Short summary of the root cause There are two interfaces: - the new `org.apache.hadoop.mapreduce.InputFormat`: providing a one arg method `getSplits(JobContext context)` (returning `List<InputSplit>`) - the old `org.apache.hadoop.mapred.InputFormat`: providing a two arg method `getSplits(JobConf job, int numSplits)` (returning `InputSplit[]`) And in Hive both are implemented by `HiveHBaseTableInputFormat` but only the old method leads to required initialisation and this why `NewHadoopRDD` fails here. ### Detailed analyses Here all the link refers latest commits of the master branches for the mentioned components at the time of writing this description (to get the right line numbers in the future too as `master` itself is a moving target). Spark in `NewHadoopRDD` uses the new interface providing the one arg method: https://github.com/apache/spark/blob/5556cfc59aa97a3ad4ea0baacebe19859ec0bcb7/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala#L136 Hive on the other hand binds the initialisation to the two args method coming from the old interface. See [Hive#getSplits](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L268): ``` Override public InputSplit[] getSplits(final JobConf jobConf, final int numSplits) throws IOException { ``` This calls `getSplitsInternal` which contains the [initialisation](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L299) too: ``` initializeTable(conn, tableName); ``` Interesting that Hive also uses the one arg method internally within the `getSplitsInternal` [here](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L356) but the initialisation done earlier. By calling the new interface method (what `NewHadoopRDD` does) the call goes straight to the HBase method: [org.apache.hadoop.hbase.mapreduce.TableInputFormatBase#getSplits](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L230). Where there would be some `JobContext` based [initialisation](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L234-L237) which by default is an [empty method](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L628-L640): ```java /** * Handle subclass specific set up. Each of the entry points used by the MapReduce framework, * {link #createRecordReader(InputSplit, TaskAttemptContext)} and {link #getSplits(JobContext)}, * will call {link #initialize(JobContext)} as a convenient centralized location to handle * retrieving the necessary configuration information and calling * {link #initializeTable(Connection, TableName)}. Subclasses should implement their initialize * call such that it is safe to call multiple times. The current TableInputFormatBase * implementation relies on a non-null table reference to decide if an initialize call is needed, * but this behavior may change in the future. In particular, it is critical that initializeTable * not be called multiple times since this will leak Connection instances. */ protected void initialize(JobContext context) throws IOException { } ``` This is not overridden by Hive and hard to reason why we need that (its an internal Hive class) so it is easier to fix this in Spark. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? 1) create hbase table ``` hbase(main):001:0>create 'hbase_test1', 'cf1' hbase(main):001:0> put 'hbase_test', 'r1', 'cf1:c1', '123' ``` 2) create hive table related to hbase table hive> ``` CREATE EXTERNAL TABLE `hivetest.hbase_test`( `key` string COMMENT '', `value` string COMMENT '') ROW FORMAT SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe' STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ( 'hbase.columns.mapping'=':key,cf1:v1', 'serialization.format'='1') TBLPROPERTIES ( 'hbase.table.name'='hbase_test') ``` 3): spark-shell query hive table while data in HBase ``` scala> spark.sql("select * from hivetest.hbase_test").show() 22/11/05 01:14:16 WARN conf.HiveConf: HiveConf of name hive.masking.algo does not exist 22/11/05 01:14:16 WARN client.HiveClientImpl: Detected HiveConf hive.execution.engine is 'tez' and will be reset to 'mr' to disable useless hive logic Hive Session ID = f05b6866-86df-4d88-9eea-f1c45043bb5f +---+-----+ |key|value| +---+-----+ | r1| 123| +---+-----+ ``` Closes #38516 from attilapiros/SPARK-32380. Authored-by: attilapiros <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]>
### What changes were proposed in this pull request? This is an update of apache#29178 which was closed because the root cause of the error was just vaguely defined there but here I will give an explanation why `HiveHBaseTableInputFormat` does not work well with the `NewHadoopRDD` (see in the next section). The PR modify `TableReader.scala` to create `OldHadoopRDD` when input format is 'org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat'. - environments (Cloudera distribution 7.1.7.SP1): hadoop 3.1.1 hive 3.1.300 spark 3.2.1 hbase 2.2.3 ### Why are the changes needed? With the `NewHadoopRDD` the following exception is raised: ``` java.io.IOException: Cannot create a record reader because of a previous error. Please look at the previous logs lines from the task's full log for more details. at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:253) at org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:131) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:446) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704) at org.apache.spark.sql.Dataset.head(Dataset.scala:2728) at org.apache.spark.sql.Dataset.take(Dataset.scala:2935) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:287) at org.apache.spark.sql.Dataset.showString(Dataset.scala:326) at org.apache.spark.sql.Dataset.show(Dataset.scala:806) at org.apache.spark.sql.Dataset.show(Dataset.scala:765) at org.apache.spark.sql.Dataset.show(Dataset.scala:774) ... 47 elided Caused by: java.lang.IllegalStateException: The input format instance has not been properly initialized. Ensure you call initializeTable either in your constructor or initialize method at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getTable(TableInputFormatBase.java:557) at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:248) ... 86 more ``` ### Short summary of the root cause There are two interfaces: - the new `org.apache.hadoop.mapreduce.InputFormat`: providing a one arg method `getSplits(JobContext context)` (returning `List<InputSplit>`) - the old `org.apache.hadoop.mapred.InputFormat`: providing a two arg method `getSplits(JobConf job, int numSplits)` (returning `InputSplit[]`) And in Hive both are implemented by `HiveHBaseTableInputFormat` but only the old method leads to required initialisation and this why `NewHadoopRDD` fails here. ### Detailed analyses Here all the link refers latest commits of the master branches for the mentioned components at the time of writing this description (to get the right line numbers in the future too as `master` itself is a moving target). Spark in `NewHadoopRDD` uses the new interface providing the one arg method: https://github.com/apache/spark/blob/5556cfc59aa97a3ad4ea0baacebe19859ec0bcb7/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala#L136 Hive on the other hand binds the initialisation to the two args method coming from the old interface. See [Hive#getSplits](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L268): ``` Override public InputSplit[] getSplits(final JobConf jobConf, final int numSplits) throws IOException { ``` This calls `getSplitsInternal` which contains the [initialisation](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L299) too: ``` initializeTable(conn, tableName); ``` Interesting that Hive also uses the one arg method internally within the `getSplitsInternal` [here](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L356) but the initialisation done earlier. By calling the new interface method (what `NewHadoopRDD` does) the call goes straight to the HBase method: [org.apache.hadoop.hbase.mapreduce.TableInputFormatBase#getSplits](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L230). Where there would be some `JobContext` based [initialisation](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L234-L237) which by default is an [empty method](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L628-L640): ```java /** * Handle subclass specific set up. Each of the entry points used by the MapReduce framework, * {link #createRecordReader(InputSplit, TaskAttemptContext)} and {link #getSplits(JobContext)}, * will call {link #initialize(JobContext)} as a convenient centralized location to handle * retrieving the necessary configuration information and calling * {link #initializeTable(Connection, TableName)}. Subclasses should implement their initialize * call such that it is safe to call multiple times. The current TableInputFormatBase * implementation relies on a non-null table reference to decide if an initialize call is needed, * but this behavior may change in the future. In particular, it is critical that initializeTable * not be called multiple times since this will leak Connection instances. */ protected void initialize(JobContext context) throws IOException { } ``` This is not overridden by Hive and hard to reason why we need that (its an internal Hive class) so it is easier to fix this in Spark. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? 1) create hbase table ``` hbase(main):001:0>create 'hbase_test1', 'cf1' hbase(main):001:0> put 'hbase_test', 'r1', 'cf1:c1', '123' ``` 2) create hive table related to hbase table hive> ``` CREATE EXTERNAL TABLE `hivetest.hbase_test`( `key` string COMMENT '', `value` string COMMENT '') ROW FORMAT SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe' STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ( 'hbase.columns.mapping'=':key,cf1:v1', 'serialization.format'='1') TBLPROPERTIES ( 'hbase.table.name'='hbase_test') ``` 3): spark-shell query hive table while data in HBase ``` scala> spark.sql("select * from hivetest.hbase_test").show() 22/11/05 01:14:16 WARN conf.HiveConf: HiveConf of name hive.masking.algo does not exist 22/11/05 01:14:16 WARN client.HiveClientImpl: Detected HiveConf hive.execution.engine is 'tez' and will be reset to 'mr' to disable useless hive logic Hive Session ID = f05b6866-86df-4d88-9eea-f1c45043bb5f +---+-----+ |key|value| +---+-----+ | r1| 123| +---+-----+ ``` Closes apache#38516 from attilapiros/SPARK-32380. Authored-by: attilapiros <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]>
### What changes were proposed in this pull request? This is an update of apache/spark#29178 which was closed because the root cause of the error was just vaguely defined there but here I will give an explanation why `HiveHBaseTableInputFormat` does not work well with the `NewHadoopRDD` (see in the next section). The PR modify `TableReader.scala` to create `OldHadoopRDD` when input format is 'org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat'. - environments (Cloudera distribution 7.1.7.SP1): hadoop 3.1.1 hive 3.1.300 spark 3.2.1 hbase 2.2.3 ### Why are the changes needed? With the `NewHadoopRDD` the following exception is raised: ``` java.io.IOException: Cannot create a record reader because of a previous error. Please look at the previous logs lines from the task's full log for more details. at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:253) at org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:131) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:446) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704) at org.apache.spark.sql.Dataset.head(Dataset.scala:2728) at org.apache.spark.sql.Dataset.take(Dataset.scala:2935) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:287) at org.apache.spark.sql.Dataset.showString(Dataset.scala:326) at org.apache.spark.sql.Dataset.show(Dataset.scala:806) at org.apache.spark.sql.Dataset.show(Dataset.scala:765) at org.apache.spark.sql.Dataset.show(Dataset.scala:774) ... 47 elided Caused by: java.lang.IllegalStateException: The input format instance has not been properly initialized. Ensure you call initializeTable either in your constructor or initialize method at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getTable(TableInputFormatBase.java:557) at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:248) ... 86 more ``` ### Short summary of the root cause There are two interfaces: - the new `org.apache.hadoop.mapreduce.InputFormat`: providing a one arg method `getSplits(JobContext context)` (returning `List<InputSplit>`) - the old `org.apache.hadoop.mapred.InputFormat`: providing a two arg method `getSplits(JobConf job, int numSplits)` (returning `InputSplit[]`) And in Hive both are implemented by `HiveHBaseTableInputFormat` but only the old method leads to required initialisation and this why `NewHadoopRDD` fails here. ### Detailed analyses Here all the link refers latest commits of the master branches for the mentioned components at the time of writing this description (to get the right line numbers in the future too as `master` itself is a moving target). Spark in `NewHadoopRDD` uses the new interface providing the one arg method: https://github.com/apache/spark/blob/5556cfc59aa97a3ad4ea0baacebe19859ec0bcb7/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala#L136 Hive on the other hand binds the initialisation to the two args method coming from the old interface. See [Hive#getSplits](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L268): ``` Override public InputSplit[] getSplits(final JobConf jobConf, final int numSplits) throws IOException { ``` This calls `getSplitsInternal` which contains the [initialisation](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L299) too: ``` initializeTable(conn, tableName); ``` Interesting that Hive also uses the one arg method internally within the `getSplitsInternal` [here](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L356) but the initialisation done earlier. By calling the new interface method (what `NewHadoopRDD` does) the call goes straight to the HBase method: [org.apache.hadoop.hbase.mapreduce.TableInputFormatBase#getSplits](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L230). Where there would be some `JobContext` based [initialisation](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L234-L237) which by default is an [empty method](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L628-L640): ```java /** * Handle subclass specific set up. Each of the entry points used by the MapReduce framework, * {link #createRecordReader(InputSplit, TaskAttemptContext)} and {link #getSplits(JobContext)}, * will call {link #initialize(JobContext)} as a convenient centralized location to handle * retrieving the necessary configuration information and calling * {link #initializeTable(Connection, TableName)}. Subclasses should implement their initialize * call such that it is safe to call multiple times. The current TableInputFormatBase * implementation relies on a non-null table reference to decide if an initialize call is needed, * but this behavior may change in the future. In particular, it is critical that initializeTable * not be called multiple times since this will leak Connection instances. */ protected void initialize(JobContext context) throws IOException { } ``` This is not overridden by Hive and hard to reason why we need that (its an internal Hive class) so it is easier to fix this in Spark. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? 1) create hbase table ``` hbase(main):001:0>create 'hbase_test1', 'cf1' hbase(main):001:0> put 'hbase_test', 'r1', 'cf1:c1', '123' ``` 2) create hive table related to hbase table hive> ``` CREATE EXTERNAL TABLE `hivetest.hbase_test`( `key` string COMMENT '', `value` string COMMENT '') ROW FORMAT SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe' STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ( 'hbase.columns.mapping'=':key,cf1:v1', 'serialization.format'='1') TBLPROPERTIES ( 'hbase.table.name'='hbase_test') ``` 3): spark-shell query hive table while data in HBase ``` scala> spark.sql("select * from hivetest.hbase_test").show() 22/11/05 01:14:16 WARN conf.HiveConf: HiveConf of name hive.masking.algo does not exist 22/11/05 01:14:16 WARN client.HiveClientImpl: Detected HiveConf hive.execution.engine is 'tez' and will be reset to 'mr' to disable useless hive logic Hive Session ID = f05b6866-86df-4d88-9eea-f1c45043bb5f +---+-----+ |key|value| +---+-----+ | r1| 123| +---+-----+ ``` Closes #38516 from attilapiros/SPARK-32380. Authored-by: attilapiros <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]>
### What changes were proposed in this pull request? This is an update of apache/spark#29178 which was closed because the root cause of the error was just vaguely defined there but here I will give an explanation why `HiveHBaseTableInputFormat` does not work well with the `NewHadoopRDD` (see in the next section). The PR modify `TableReader.scala` to create `OldHadoopRDD` when input format is 'org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat'. - environments (Cloudera distribution 7.1.7.SP1): hadoop 3.1.1 hive 3.1.300 spark 3.2.1 hbase 2.2.3 ### Why are the changes needed? With the `NewHadoopRDD` the following exception is raised: ``` java.io.IOException: Cannot create a record reader because of a previous error. Please look at the previous logs lines from the task's full log for more details. at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:253) at org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:131) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:446) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704) at org.apache.spark.sql.Dataset.head(Dataset.scala:2728) at org.apache.spark.sql.Dataset.take(Dataset.scala:2935) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:287) at org.apache.spark.sql.Dataset.showString(Dataset.scala:326) at org.apache.spark.sql.Dataset.show(Dataset.scala:806) at org.apache.spark.sql.Dataset.show(Dataset.scala:765) at org.apache.spark.sql.Dataset.show(Dataset.scala:774) ... 47 elided Caused by: java.lang.IllegalStateException: The input format instance has not been properly initialized. Ensure you call initializeTable either in your constructor or initialize method at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getTable(TableInputFormatBase.java:557) at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:248) ... 86 more ``` ### Short summary of the root cause There are two interfaces: - the new `org.apache.hadoop.mapreduce.InputFormat`: providing a one arg method `getSplits(JobContext context)` (returning `List<InputSplit>`) - the old `org.apache.hadoop.mapred.InputFormat`: providing a two arg method `getSplits(JobConf job, int numSplits)` (returning `InputSplit[]`) And in Hive both are implemented by `HiveHBaseTableInputFormat` but only the old method leads to required initialisation and this why `NewHadoopRDD` fails here. ### Detailed analyses Here all the link refers latest commits of the master branches for the mentioned components at the time of writing this description (to get the right line numbers in the future too as `master` itself is a moving target). Spark in `NewHadoopRDD` uses the new interface providing the one arg method: https://github.com/apache/spark/blob/5556cfc59aa97a3ad4ea0baacebe19859ec0bcb7/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala#L136 Hive on the other hand binds the initialisation to the two args method coming from the old interface. See [Hive#getSplits](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L268): ``` Override public InputSplit[] getSplits(final JobConf jobConf, final int numSplits) throws IOException { ``` This calls `getSplitsInternal` which contains the [initialisation](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L299) too: ``` initializeTable(conn, tableName); ``` Interesting that Hive also uses the one arg method internally within the `getSplitsInternal` [here](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L356) but the initialisation done earlier. By calling the new interface method (what `NewHadoopRDD` does) the call goes straight to the HBase method: [org.apache.hadoop.hbase.mapreduce.TableInputFormatBase#getSplits](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L230). Where there would be some `JobContext` based [initialisation](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L234-L237) which by default is an [empty method](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L628-L640): ```java /** * Handle subclass specific set up. Each of the entry points used by the MapReduce framework, * {link #createRecordReader(InputSplit, TaskAttemptContext)} and {link #getSplits(JobContext)}, * will call {link #initialize(JobContext)} as a convenient centralized location to handle * retrieving the necessary configuration information and calling * {link #initializeTable(Connection, TableName)}. Subclasses should implement their initialize * call such that it is safe to call multiple times. The current TableInputFormatBase * implementation relies on a non-null table reference to decide if an initialize call is needed, * but this behavior may change in the future. In particular, it is critical that initializeTable * not be called multiple times since this will leak Connection instances. */ protected void initialize(JobContext context) throws IOException { } ``` This is not overridden by Hive and hard to reason why we need that (its an internal Hive class) so it is easier to fix this in Spark. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? 1) create hbase table ``` hbase(main):001:0>create 'hbase_test1', 'cf1' hbase(main):001:0> put 'hbase_test', 'r1', 'cf1:c1', '123' ``` 2) create hive table related to hbase table hive> ``` CREATE EXTERNAL TABLE `hivetest.hbase_test`( `key` string COMMENT '', `value` string COMMENT '') ROW FORMAT SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe' STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ( 'hbase.columns.mapping'=':key,cf1:v1', 'serialization.format'='1') TBLPROPERTIES ( 'hbase.table.name'='hbase_test') ``` 3): spark-shell query hive table while data in HBase ``` scala> spark.sql("select * from hivetest.hbase_test").show() 22/11/05 01:14:16 WARN conf.HiveConf: HiveConf of name hive.masking.algo does not exist 22/11/05 01:14:16 WARN client.HiveClientImpl: Detected HiveConf hive.execution.engine is 'tez' and will be reset to 'mr' to disable useless hive logic Hive Session ID = f05b6866-86df-4d88-9eea-f1c45043bb5f +---+-----+ |key|value| +---+-----+ | r1| 123| +---+-----+ ``` Closes #38516 from attilapiros/SPARK-32380. Authored-by: attilapiros <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]>
This is an update of apache#29178 which was closed because the root cause of the error was just vaguely defined there but here I will give an explanation why `HiveHBaseTableInputFormat` does not work well with the `NewHadoopRDD` (see in the next section). The PR modify `TableReader.scala` to create `OldHadoopRDD` when input format is 'org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat'. - environments (Cloudera distribution 7.1.7.SP1): hadoop 3.1.1 hive 3.1.300 spark 3.2.1 hbase 2.2.3 With the `NewHadoopRDD` the following exception is raised: ``` java.io.IOException: Cannot create a record reader because of a previous error. Please look at the previous logs lines from the task's full log for more details. at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:253) at org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:131) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:446) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:429) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3715) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2728) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3706) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3704) at org.apache.spark.sql.Dataset.head(Dataset.scala:2728) at org.apache.spark.sql.Dataset.take(Dataset.scala:2935) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:287) at org.apache.spark.sql.Dataset.showString(Dataset.scala:326) at org.apache.spark.sql.Dataset.show(Dataset.scala:806) at org.apache.spark.sql.Dataset.show(Dataset.scala:765) at org.apache.spark.sql.Dataset.show(Dataset.scala:774) ... 47 elided Caused by: java.lang.IllegalStateException: The input format instance has not been properly initialized. Ensure you call initializeTable either in your constructor or initialize method at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getTable(TableInputFormatBase.java:557) at org.apache.hadoop.hbase.mapreduce.TableInputFormatBase.getSplits(TableInputFormatBase.java:248) ... 86 more ``` There are two interfaces: - the new `org.apache.hadoop.mapreduce.InputFormat`: providing a one arg method `getSplits(JobContext context)` (returning `List<InputSplit>`) - the old `org.apache.hadoop.mapred.InputFormat`: providing a two arg method `getSplits(JobConf job, int numSplits)` (returning `InputSplit[]`) And in Hive both are implemented by `HiveHBaseTableInputFormat` but only the old method leads to required initialisation and this why `NewHadoopRDD` fails here. Here all the link refers latest commits of the master branches for the mentioned components at the time of writing this description (to get the right line numbers in the future too as `master` itself is a moving target). Spark in `NewHadoopRDD` uses the new interface providing the one arg method: https://github.com/apache/spark/blob/5556cfc59aa97a3ad4ea0baacebe19859ec0bcb7/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala#L136 Hive on the other hand binds the initialisation to the two args method coming from the old interface. See [Hive#getSplits](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L268): ``` Override public InputSplit[] getSplits(final JobConf jobConf, final int numSplits) throws IOException { ``` This calls `getSplitsInternal` which contains the [initialisation](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L299) too: ``` initializeTable(conn, tableName); ``` Interesting that Hive also uses the one arg method internally within the `getSplitsInternal` [here](https://github.com/apache/hive/blob/fd029c5b246340058aee513980b8bf660aee0227/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HiveHBaseTableInputFormat.java#L356) but the initialisation done earlier. By calling the new interface method (what `NewHadoopRDD` does) the call goes straight to the HBase method: [org.apache.hadoop.hbase.mapreduce.TableInputFormatBase#getSplits](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L230). Where there would be some `JobContext` based [initialisation](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L234-L237) which by default is an [empty method](https://github.com/apache/hbase/blob/63cdd026f08cdde6ac0fde1342ffd050e8e02441/hbase-mapreduce/src/main/java/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.java#L628-L640): ```java /** * Handle subclass specific set up. Each of the entry points used by the MapReduce framework, * {link #createRecordReader(InputSplit, TaskAttemptContext)} and {link #getSplits(JobContext)}, * will call {link #initialize(JobContext)} as a convenient centralized location to handle * retrieving the necessary configuration information and calling * {link #initializeTable(Connection, TableName)}. Subclasses should implement their initialize * call such that it is safe to call multiple times. The current TableInputFormatBase * implementation relies on a non-null table reference to decide if an initialize call is needed, * but this behavior may change in the future. In particular, it is critical that initializeTable * not be called multiple times since this will leak Connection instances. */ protected void initialize(JobContext context) throws IOException { } ``` This is not overridden by Hive and hard to reason why we need that (its an internal Hive class) so it is easier to fix this in Spark. No. 1) create hbase table ``` hbase(main):001:0>create 'hbase_test1', 'cf1' hbase(main):001:0> put 'hbase_test', 'r1', 'cf1:c1', '123' ``` 2) create hive table related to hbase table hive> ``` CREATE EXTERNAL TABLE `hivetest.hbase_test`( `key` string COMMENT '', `value` string COMMENT '') ROW FORMAT SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe' STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ( 'hbase.columns.mapping'=':key,cf1:v1', 'serialization.format'='1') TBLPROPERTIES ( 'hbase.table.name'='hbase_test') ``` 3): spark-shell query hive table while data in HBase ``` scala> spark.sql("select * from hivetest.hbase_test").show() 22/11/05 01:14:16 WARN conf.HiveConf: HiveConf of name hive.masking.algo does not exist 22/11/05 01:14:16 WARN client.HiveClientImpl: Detected HiveConf hive.execution.engine is 'tez' and will be reset to 'mr' to disable useless hive logic Hive Session ID = f05b6866-86df-4d88-9eea-f1c45043bb5f +---+-----+ |key|value| +---+-----+ | r1| 123| +---+-----+ ``` Closes apache#38516 from attilapiros/SPARK-32380. Authored-by: attilapiros <[email protected]> Signed-off-by: Hyukjin Kwon <[email protected]> (cherry picked from commit 7009ef0) Signed-off-by: Hyukjin Kwon <[email protected]>
What changes were proposed in this pull request?
The PR modify TableReader.scala to create OldHadoopRDD when inputformat is 'org.apache.hadoop.hive.hbase.HiveHBaseTableInputFormat', beacuse default NewHadoopRDD can not access hbase table.
Reference link: https://issues.apache.org/jira/browse/SPARK-32380
hadoop 2.8.5
hive 2.3.7
spark 3.0.0
hbase 1.4.9
Why are the changes needed?
When sparksql cannot access hive table while data in hbase will encounter abnormality, want to fixed this bug.
Does this PR introduce any user-facing change?
no
How was this patch tested?
hive>
spark-sql --master yarn -e "select * from hivetest.hbase_test"