You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[SPARK-17699] Support for parsing JSON string columns
Spark SQL has great support for reading text files that contain JSON data. However, in many cases the JSON data is just one column amongst others. This is particularly true when reading from sources such as Kafka. This PR adds a new functions `from_json` that converts a string column into a nested `StructType` with a user specified schema.
Example usage:
```scala
val df = Seq("""{"a": 1}""").toDS()
val schema = new StructType().add("a", IntegerType)
df.select(from_json($"value", schema) as 'json) // => [json: <a: int>]
```
This PR adds support for java, scala and python. I leveraged our existing JSON parsing support by moving it into catalyst (so that we could define expressions using it). I left SQL out for now, because I'm not sure how users would specify a schema.
Author: Michael Armbrust <[email protected]>
Closes#15274 from marmbrus/jsonParser.
0 commit comments